
RAFT-3D: Supplementary Material

Co
nv

7x
7

(6
4)

Re
sU

nit
 (6

4)

Re
sU

nit
 (6

4)

Re
sU

nit
 (9

6)

Re
sU

nit
 (9

6)

Re
sU

nit
 (1

28
)

Re
sU

nit
 (1

28
)

Feature Encoder

ResNet 50

Co
nv

3x
3(

51
2)

Co
nv

3x
3(

51
2)

Context Encoder

Flow (2d)
Twist (6d)

Depth Res. (6d)

Co
nv

7x
7

(1
28

)

Co
nv

3x
3(

12
8x

3)

Correlation
Features

Co
nv

3x
3

(2
56

)

Co
nv

3x
3(

25
6)

Co
nv

3x
3(

12
8x

3)

GRU-3x3(128)

Co
nv

3x
3

(2
56

)

Co
nv

3x
3(

3)

Co
nv

3x
3

(2
56

)

Co
nv

3x
3(

3)

Co
nv

3x
3

(2
56

)

Co
nv

3x
3(

32
)

"revisions"

"weights"

"embeddings"

GRU Convolution Kernel

Context Features

Figure 1. Network architecture. The components include (1) a fea-

ture encoder (2) a context encoder with a ResNet50 backbone, and

(3) and GRU-based updated operator. The GRU uses a dilated con-

volution pattern as shown. In contrast to RAFT[3] where features

are concatenated before being passed to the GRU, we perform ele-

mentwise addition of the context features, correlation features, and

motion features.

1. Network Architecture

Details of the network architecture, including feature en-

coders and the GRU-based update operator are shown in

Figure 1.

2. bi-Laplacian Optimization Layer Gradients

This layer minimizes an objective function in the form

||Dxu||
2

wx
+ ||Dxu||

2

wy
+ ||u− v||2 (1)

where Dx and Dy are linear finite difference operators, and

v is the flattened feature map.

First consider the case of single channel, v ∈ R
HW . Let

Wx = diag(wx),Wy = diag(wy) ∈ R
HW×HW . We can

solve for u∗

(I+DT
xWxD

T
x +DT

y WyD
T
y)u

∗ = v (2)

We perform sparse Cholesky factorization and backsubsti-

tion to solve for u∗ using the Cholmod library[2].

Gradients: In the backward pass, given the gradient ∂L
∂u∗

,

we need to find the gradients with respect to the boundary

weights ∂L
∂wx

and ∂L
∂wy

.

Given the linear system Hu = v, the gradients with re-

spect to H and v can be found by solving the system in the

backward direction [1]

∂L

∂v
= H

−T ∂L

∂u∗
(3)

∂L

∂H
= u

∗
d
T
v (4)

dv = H
−T ∂L

∂u∗
(5)

Here the column vector dv is defined for notational conve-

nience. Since H is positive definite, H−T = H
−1 so we

can reuse the factorization from the forward pass.

To compute the gradients with respect to wx and wx

∂L

∂wx

= diag

(

∂L

∂H

∂H

∂Wx

)

(6)

= diag
(

(Dxu
∗)(Dxdv)

T
)

(7)

giving
∂L

∂wx

= (Dxu
∗)⊙ (Dxdv) (8)

where ⊙ is elementwise multiplication. Similarly

∂L

∂wy

= (Dyu
∗)⊙ (Dydv) (9)

Multiple Channels: We can easily extend Eqn. 2 to work

with multiple channels. Since the matrix H does not depend

on v, it only needs to be factored once. We can solve Eqn. 2

for all channels by reusing the factorization, treating v as a

HW×C matrix. The gradient formulas can also be updated

by summing the gradients over the channel dimensions.

References

[1] Brandon Amos and J Zico Kolter. Optnet: Differentiable op-

timization as a layer in neural networks. In Proceedings of the

34th International Conference on Machine Learning-Volume

70, pages 136–145. JMLR. org, 2017. 1

[2] Yanqing Chen, Timothy A Davis, William W Hager, and

Sivasankaran Rajamanickam. Algorithm 887: Cholmod, su-

pernodal sparse cholesky factorization and update/downdate.

ACM Transactions on Mathematical Software (TOMS),

35(3):1–14, 2008. 1

[3] Zachary Teed and Jia Deng. RAFT: recurrent all-pairs field

transforms for optical flow. In European conference on com-

puter vision, pages 402–419. Springer, 2020. 1

1

