RAFT-3D: Supplementary Material
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Figure 1. Network architecture. The components include (1) a fea-
ture encoder (2) a context encoder with a ResNet50 backbone, and
(3) and GRU-based updated operator. The GRU uses a dilated con-
volution pattern as shown. In contrast to RAFT[3] where features
are concatenated before being passed to the GRU, we perform ele-
mentwise addition of the context features, correlation features, and
motion features.

1. Network Architecture

Details of the network architecture, including feature en-
coders and the GRU-based update operator are shown in
Figure 1.

2. bi-Laplacian Optimization Layer Gradients

This layer minimizes an objective function in the form
1Dzull5,, +[1Deull5,, + [[u— v (1)

where D, and D, are linear finite difference operators, and
v is the flattened feature map.

First consider the case of single channel, v € RHW  Let
W, = diag(w,), W, = diag(w,) € REW>XHW We can
solve for u*
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We perform sparse Cholesky factorization and backsubsti-
tion to solve for u* using the Cholmod library[2].

Gradients: In the backward pass, given the gradient g lﬁ ,

we need to find the gradients with respect to the boundary
weights aaTL and gTL.

Given the linear system Hu = v, the gradients with re-
spect to H and v can be found by solving the system in the

backward direction [1]
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Here the column vector d,, is defined for notational conve-
nience. Since H is positive definite, H~7 = H~! so we
can reuse the factorization from the forward pass.

To compute the gradients with respect to w,, and w,,
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where © is elementwise multiplication. Similarly
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Multiple Channels: We can easily extend Eqn. 2 to work
with multiple channels. Since the matrix H does not depend
on v, it only needs to be factored once. We can solve Eqn. 2
for all channels by reusing the factorization, treating v as a
HW x C matrix. The gradient formulas can also be updated
by summing the gradients over the channel dimensions.
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