
Supplementary Material

1. SO(3), SE(3) and Sim(3) Formulas
Given a Lie group G with Lie algebra g, we provide the expressions for SO(3), SE(3), and Sim(3)

∧ Operator: The ∧ operator takes elements from Rk to the lie algebra g. For φ ∈ R3

φ∧ =

 0 -φz φy
φz 0 -φx
-φy φx 0

 ∈ so(3) (1)

for ξ = (τ ,φ) ∈ R6

ξ∧ =

(
φ∧ τ
0 1

)
=


0 -φz φy τx
φz 0 -φx τy
-φy φx 0 τz
0 0 0 1

 ∈ se(3) (2)

and for η = (τ ,φ, σ) ∈ R7

η∧ =

(
φ∧ + σI3×3 τ

σ 1

)
=


σ -φz φy τx
φz σ -φx τy
-φy φx σ τz
0 0 0 1

 ∈ sim(3) (3)

f Operator: The f operator takes elements from Rk to the lie algebra adj(g), where adj(g) is the Lie algebra
associated with the group Adj(G) = {Adj(X) | X ∈ G}, It can be shown that Adj(G) also forms a Lie group [1].

For φ ∈ R3

φf = φ∧ ∈ adj(so(3)) (4)

for ξ = (τ ,φ) ∈ R6

ξf =

(
φ∧ τ∧

0 φ∧

)
∈ adj(se(3)) (5)

and for η = (τ ,φ, σ) ∈ R7

ηf =

φ∧ + σI3×3 τ∧ −τ
0 φ∧ 0
0 0 0

 ∈ adj(sim(3)) (6)

Exp Map: The exponential map takes elements from the Lie algebra to the Lie group. For SO(3), SE(3), and
Sim(3) the exponential map has a closed form expressions. For φ ∈ R3

Exp(φ) = exp(φ∧) = I3×3 +
sin(θ)

θ
φ∧ +

1− cos(θ)

θ2
(φ∧)2, θ = ||φ|| (7)

for ξ = (τ ,φ) ∈ R6

Exp(ξ) =

(
R Vτ
0 1

)
, R = Exp(φ) (8)

V = I3×3 +
1− cos(θ)

θ2
φ∧ +

θ − sin(θ)

θ3
(φ∧)2, θ = ||φ|| (9)

1

and for η = (τ ,φ, σ) ∈ R7

Exp(ξ) =

(
eσR Wτ
0 1

)
, R = Exp(φ) (10)

W =

(
eσ − 1

σ

)
I3×3 +

1

θ

(
eσ sin(θ)σ + (1− eσ cos(θ))θ

σ2 + θ2

)
φ∧+ (11)

1

θ2

(
eσ − 1

σ
+

(eσ cos(θ)− 1)σ + eσ sin(θ)θ

σ2 + θ2

)
(φ∧)2, θ = ||φ|| (12)

When θ or σ is small, we use second order Taylor approximations of the exponential maps to avoid numerical issues.
Log Map: The logarithm map takes elements from the Lie group to the Lie algebra. For SO(3), SE(3), and Sim(3)
the logarithm map can be computed in closed form. For a rotation R ∈ SO(3)

Log(R) =
ψ(R−RT)∨

2 sin(ψ)
, ψ = cos−1

(
tr(R)− 1

2

)
(13)

for G =

(
R t
0 1

)
∈ SE(3) we have

ξ =

(
τ
φ

)
=

(
V−1t
Log(R)

)
= Log(G) (14)

V−1 = I3×3 −
1

2
φ∧ +

(
1

φ2
− 1 + cos θ

2θ sin θ

)
(φ∧)2, θ = ||φ|| (15)

and for T =

(
sR t
0 1

)
∈ Sim(3)

η =

τφ
σ

 =

W−1t
Log(R)
ln(s)

 = Log(T) (16)

where W−1 can be computed by taking the inverse Eqn. 12.
Adj Operator: The ajoint operator is a linear map which allows us to move an element ν ∈ g in the right tangent
space of X ∈ G to the left tangent space

Exp(AdjX ν) ◦X = X ◦ Exp(ν) (17)

For R ∈ SO(3)
AdjR = R (18)

for G =

(
R t
0 1

)
∈ SE(3)

AdjG =

(
R τ∧R
0 R

)
(19)

and for T =

(
sR t
0 1

)
∈ Sim(3) we have

AdjT =

sR τ∧R −t
0 R 0
0 0 1

 (20)

Inv Operator: Since SO(3), SE(3), and Sim(3) all form a group, each element has a unique inverse. For R ∈
SO(3)

R−1 = RT (21)

2

X Y
f

Figure 1. Illustration of the differential between two Lie groups.

for G =

(
R t
0 1

)
∈ SE(3)

G−1 =

(
RT −RT t
0 1

)
(22)

and for T =

(
sR t
0 1

)
∈ Sim(3) we have

T−1 =

(
s−1RT −s−1RT t

0 1

)
(23)

2. Differentials and Jacobians
In the main paper, we derived the gradients for group multiplication. Here we provide derivations of the gradients

for the remaining operators
Group Inverse: Using the definition of the differential

Df(X)[v] = lim
t→0

Log((etvX)−1(X−1)−1)

t
(24)

= lim
t→0

Log(X−1e−tvX)

t
(25)

using the adjoint

= lim
t→0

Log(Exp(−AdjX -1(tv))X−1X)

t
(26)

= lim
t→0

−AdjX -1 tv

t
= −AdjX -1 v (27)

This can be used to recover the Jacobian −AdjX -1 .
Action on a Point: We can use elements from the 3D transformation groups to transform a 3D point or set of points.
Given a homogeneous point p = (X,Y, Z, 1)T we can transform p using a transformation X

p′ = Xp (28)

To make the notation consistent for all groups, a rotation can be represented as the 4× 4 matrix X =

(
R 0
0 1

)
. X is

a linear operator on p, so the Jacobian is simply the matrix representation of X

∂p′

∂p
= X (29)

3

We can also get the differential with respect to the transformation

Df(X)[v] =
d

dt
(etvXp)

∣∣∣∣
t=0

=
d

dt
(etvp′)

∣∣∣∣
t=0

= v∧p′ (30)

Adjoint: We consider the adjoint as the function Adj : G × g 7→ g, AdjX(ω) = υ. We need the Jacobians with
respect to both X and ω. Since the adjoint is a linear map in terms of υ then

∂υ

∂ω
= AdjX ,

∂L

∂ω
=
∂L

∂υ
AdjX (31)

where AdjX ∈ R6×6 is the matrix representation of the adjoint. The gradient with respect to X can be found

DAdjX(ω)[v] =
∂

∂t

(
etvXω∧(etvX)−1

)∨∣∣∣∣
t=0

(32)

=
∂

∂t

(
etvXω∧X−1e−tv

)∨∣∣∣∣
t=0

(33)

=
∂

∂t

(
etvυ∧e−tv

)∨∣∣∣∣
t=0

(34)

=

(
∂

∂t
etvυ∧e−tv

)∨∣∣∣∣∣
t=0

(35)

=(v∧υ∧ − υ∧v∧)∨ = υfv (36)

Where f is defined in Sec 1. We note that the differential is linear in v allowing us to write the Jacobian and gradients
as

∂υ

∂X
= υf,

∂L

∂X
=
∂L

∂υ
υf (37)

Exponential and Logarithm Maps: The Jacobian of the exponential map Jl = ∂
∂x Exp(x) is referred to as the

left-Jacobian and can be written using the series [1] (page 235)

Jl(φ) =

∞∑
n=0

1

(n+ 1)!
(φf)n (38)

For SO(3) and SE(3) closed form expressions exist for Eqn. 38, otherwise we use the first 3 terms.
The Jacobian of the logarithm map J−1l = ∂

∂X Log(X) and can be computed using the series

J−1l (φ) =

∞∑
n=0

Bn
n!

(φf)n (39)

whereBn are the Bernoulli numbers [1](page 234). Again, we used analytic expressions of J−1l for SO(3) and SE(3),
and the first 3 terms for Sim(3).

3. Sim(3) Network Architecture
A overview of the Sim(3) network architecture is shown in Fig. 2. The context and feature encoders are identical

to RAFT. We replace the 5× 1, 1× 5 GRU used in RAFT with a single 3× 3 convolutional GRU, using a hidden state
size of 128 channels. We apply 12 iterations during both training and testing.

References
[1] Timothy D Barfoot. State estimation for robotics. Cambridge University Press, 2017. 1, 4
[2] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. arXiv preprint arXiv:2003.12039, 2020.

5

4

Image/Depth 1

Image/Depth 2

Feature Encoder

Context Encoder

Figure 2. Network architecture used for our Sim(3) registration experiments. The network architecture is based on RAFT[2]. The
top branch estimates motion from I1 → I2 and the bottom branch estimates motion in the opposite direction I2 → I1. Features are
first extracted from each of the two input images and used to construct two 4D correlation volumes, which are pooled at multiple
resolutions according to RAFT. During each iteration, the current estimate of the transformation T is used to index from each of
the correlation volumes. The correlation features are processed by the GRU which outputs a residual flow estimate (optical flow
not explained by the current transformation T. Both bidirectional residual flow estimates are used as input to a optimization layer,
which unrolls 3 Gauss-Newton iterations to produced a transformation update ∆T, which is applied to the current transformation
estimate.

5

