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In this supplementary material we provided additional
material on 1) The theoretical analysis of the influence func-
tion under “ideal” case (Section 1), 2) Influence calculation
Algorithm (Section 2), 3) Influences of restricted Boolean
functions (Section 3) and 4) Additional Results on synthetic
and real data (Section 4).

1. Influence Function in the Ideal Case
In this section we provide the proofs of the two theo-

rems (Theorem 3.1 and 3.2) presented in the main paper.
For completeness we have replicated some definitions here
which also appear in the main paper.

1.1. Ideal single structure case

We first formally define an ideal structure in data. Let
Lk := {x ∈ {0, 1}n : ‖x‖1 = k} be the level k in the n-
dimensional Boolean cube and, L≤k the levels below k+1.

Definition 3.1. Given a monotone Boolean function f , for
xk ∈ Lk (p < k ≤ n), f is called ideal with respect to xk

if

f (x) =

{
0 ∀x ∈ Bxk ∪ L≤p
1 others

(1)

where Bxk =
{
x ∈ {0, 1}n : d

(
x,xk

)
= l,x ∈ Lk−l

}
for

all 0 ≤ l ≤ k − p− 1, is the Boolean sub-cube determined
by xk. Here, d (·, ·) is the hamming distance.

Theorem 3.1. If a monotone Boolean function f is ideal
with respect to xk ∈ Lk, then

Infi [f ] =


Cn−1

p −Ck−1
p

2n if i is inlier
Cn−1

p +
∑k

l=p+1 C
k
l

2n if i is outlier
(2)

Proof. At level l (p + 1 6 l 6 k), by the definition of the
Boolean sub-cubeBxk , boundary edges (pointing from fea-
sible area to infeasible area) only come from flipping out-
liers (changing from 0 to 1), which have Ckl (n− k) edges.

At level p, boundary edges are composed by three parts:
(1) edges pointing fromBxk∩Lp to Lp+1\Bxk by flipping
outliers, (2) edges pointing from Lp \ Bxk to Lp+1 \ Bxk

by flipping inliers, and (3) edges pointing from Lp \Bxk to
Lp+1\Bxk by flipping outliers. The first part hasCkp (n−k)
edges. Since

2 6 d(x, y) 6 min{2p, 2(n− k)}

for any x ∈ Lp\Bxk and y ∈ Lp∩Bxk , then the second part
has

∑p−1
l=max{0,p+k−n} C

k
l C

n−k
p−l (k − l) edges and the third

part has
∑p−1
l=max{0,p+k−n} C

k
l C

n−k
p−l (n−k−(p−l)) edges.

Since all inliers (or outliers) have the same influences, then
we have

2nInfi [f ] =

p−1∑
l=max{0,p+k−n}

Ckl C
n−k
p−l (1−

l

k
)

=

p−1∑
l=max{0,p+k−n}

(Ckl C
n−k
p−l − C

k−1
l−1 C

n−k
p−l )

= Cnp − Ckp − (Cn−1p−1 − C
k−1
p−1 )

= Cn−1p − Ck−1p

and

2nInfj [f ] =

k∑
l=p

Ckl +

p−1∑
l=max{0,p+k−n}

Ckl C
n−k
p−l (1−

p− l
n− k

)

=

k∑
l=p

Ckl +

p−1∑
l=max{0,p+k−n}

(Ckl C
n−k
p−l − C

k
l C

n−k−1
p−l−1 )

=

k∑
l=p

Ckl + Cnp − Ckp − Cn−1p−1

= Cn−1p +

k∑
l=p+1

Ckl .



1.2. Ideal K-structure case

In what follows, we generalize the above result to ideal
K-structure (K ≥ 1), namely there are K upper zeros only
and the Boolean sub-cubes determined by these upper zeros
are disjoint above level p.

Definition 3.1. Let f be a monotone Boolean function and{
xkr
}K
r=1

upper zeros, where p < k1 ≤ k2 ≤ · · · ≤ kK ≤
n, then f is called K-ideal with respect to

{
xkr
}K
r=1

if

1) d
(
Bxki \ L≤p, Bxkj \ L≤p

)
> 0 ∀ki 6= kj

2) f (x) =

{
0 ∀x ∈

⋃K
r=1Bxkr ∪ L≤p

1 others
(3)

Let Scxkr be the set of inlier (if c = 1) or the set of out-
liers (if c = 0) with respect to xkr . Then we can define

Sc1c2···cK =

K⋂
r=1

Scr
xkr

cr ∈ {0, 1} (4)

which represent the index set of inlier to structures where
bit string c1c2 · · · cK is one. For example, S11···1 is the in-
dex set of points that are inliers with respect to all xkr , and
S00···0 is the index set of points that are outliers with respect
to all xkr .

Theorem 3.2.

2nInfSc1···cK [f ] = Cn−1p +
∑
cr=0

1≤r≤K

kr∑
l=p+1

Ckrl −
∑
cr=1

1≤r≤K

Ckr−1p

(5)
where InfSc1···cK [f ] denote the influence Infi [f ] of i ∈
Sc1c2···cK .

Proof. We prove the theorem by induction on K. When
K = 1, equation (5) holds by Theorem 3.1.

Suppose equation (5) holds for 1, 2, · · · ,K − 1, namely,

2nInfSc1···cK−1
[f ] = Cn−1p +

∑
cr=0

1≤r≤K−1

kr∑
l=p+1

Ckrl

−
∑
cr=1

1≤r≤K−1

Ckr−1p

now we only have to prove

2nInfSc1···cK [f ] ={
2nInfSc1···cK−1

[f ] +
∑kK
l=p+1 C

kK
l , jK = 0,

2nInfSc1···cK−1
[f ]− CkK−1p , jK = 1.

Since Sc1···cK = Sc1···cK−1
∩ScK

xkK
, we consider four types

of sets: S1
xkK
\ (Sc1···cK−1

∩ S1
xkK

), Sc1···cK−1
∩ S1

xkK
,

Sc1···cK−1
∩S0

xkK
, S0

xkK
\(Sc1···cK−1

∩S0
xkK

). When adding
one more upper zero xkK , the increased boundary edges by
flipping outliers with respect to xkK (changing from 0 to 1
in S0

xkK
from level p+ 1 to kK) have

kK∑
l=p+1

|Sc1···cK−1
∩S1

xkK
|∑

s=max{0,l−(kK−|Sc1···cK−1
∩S1

xkK
|)}

C
kK−|Sc1···cK−1

∩S1

xkK
|

l−s C
|Sc1···cK−1

∩S1

xkK
|

s

=

kK∑
l=p+1

CkKl .

While boundary edges coming from flipping inliers with
respect to xkK (changing from 0 to 1 and pointing from
Lp \ BxkK to Lp+1 \ BxkK ) decrease, which have

|Sc1···cK−1
∩S1

xkK
|∑

l=0

C
|Sc1···cK−1

∩S1

xkK
|

l C
kK−|Sc1···cK−1

∩S1

xkK
|

p−l(
1− p− l

kK − |Sc1···cK−1
∩ S1

xkK
|

)
= CkKp −
|Sc1···cK−1

∩S1

xkK
|∑

l=0

C
|Sc1···cK−1

∩S1

xkK
|

l C
kK−|Sc1···cK−1

∩S1

xkK
|−1

p−l−1

= CkKp − CkK−1p−1

= CkK−1p ,

which completes the proof.

2. Influence calculation algorithm

In our experiments, the influences are computed using
the following equation:

Inf
(q)
i [f ] = E

x∼µq(x)
δ
[
f (x) 6= f

(
x⊕i
)]
. (6)

One can use the monotonic nature of f to save some com-
putations in the above estimation. In a MBF, the function
value before the bit flip has some information regarding the
value after: If the output is infeasible and the bit is flipped
from 0 → 1 then the new output should be one or, If the
output is feasible and the bit is flipped from 1 → 0 then
the new output should be zero. The algorithm we use to
estimate the influences is available in algorithm 1.



Algorithm 1 Estimating the influences
Require: Indices for which the influences are to be esti-

mated B, {pi}nj=1, m, q.
1: I← zeros (m, |B|)
2: for j ∈ {1, 2, . . . ,m} do
3: x ∼ µq(x) . Sample an x from µq(x)
4: yx ← f (x) . Evaluate feasibility
5: for i ∈ B do
6: if (xi = 1 ∧ yx = 0) ∨ (xi = 0 ∧ yx = 1) then
7: yx⊕i ← yx
8: else
9: yx⊕i ← f

(
x⊕i
)

10: end if
11: I (j, i)← δ [yx 6= yx⊕i ]
12: end for
13: end for
14: return Average I across axis 1.

3. Influences of restricted Boolean functions

Any real valued Boolean function f : {0, 1}n → {0, 1}
can be expressed in terms of its Fourier expansion [2]:

f (x) =
∑

s∈{0,1}n
f̂ (s)χs (x) . (7)

Here χs : {0, 1}n → R is the Fourier basis which consists
of 2n functionals and, f̂ (s) ∈ R are the Fourier coefficients.
The above definition of the Boolean function leads to the
basis: χs (x) = (−1)1+

∑
i∈s xi .

For a MBF, the influence of the i’th coordinate is equal
to the degree-1 Fourier coefficient [2].

Infi [f ] = f̂ ({i}) (8)

If f̂(t) ({i}) is the degree-1 Fourier coefficient at itera-
tion t of the algorithm 1 in the main paper, then f̂(t) ({i}) 6=
f̂(t−1) ({i}). Here the function at level t is a restricted ver-
sion of the function at level t− 1 (some bits in the function
are fixed to certain bit values). In algorithm 1, we fix one
of the bits to zeros (exclude a point) when going from one
iteration to the other. The degree-1 Fourier coefficient at
iteration t of the algorithm can be written as:

f̂(t) ({i}) = f̂(t−1) ({i}) + f̂(t−1) ({i, e}) (9)

where e is the data point, removed at iteration t − 1. From
equations (8) and (9) we can see that: If Inf

[t]
i [f ] is the

influence of point i at iteration t of the algorithm, then
Inf

[t]
i [f ] 6= Inf

[t−1]
i [f ].

4. Additional Results

4.1. Controlled experiments with synthetic data

To study the computational time behaviour of the pro-
posed algorithm under higher percentage of outliers, we ex-
tended the synthetic data experiments presented in Section
4.2 in the main paper to include up to 40% outliers (the size
of each synthetic dataset is 200 data points). The results in
figure 1, inline with the results presented in the main pa-
per, show that the computational time of the proposed algo-
rithms increase linearly with the number of outliers.
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Figure 1. Variation of computational time with the fraction of out-
liers in 8-dimensional robust linear regression with synthetic data.
The experiments were repeated 100 times and the error-bars indi-
cate the 0.05-th and0.95-th percentile.

4.2. Affects of local expansion step on Linearized
fundamental matrix estimation

To evaluate how the local expansion step (Algorithm 2 in
the main paper) in the proposed algorithm affect the over-
all performance on Linearized fundamental matrix estima-
tion, we compared the performance of the algorithm with
(MBF-MaxCon) and without (MBF-MaxCon-nL) the local
expansion step. We used the first five crossroads image pairs
from the sequence “00” of the KITTI Odometry dataset [1].
The difference between the Number of inliers returned by
each method (|I•|) and ASTAR-NAPA-DIPB (|IA∗ |) and
the computation times for each algorithm are shown in Fig-
ure 2. The results reported for the probabilistic methods are
the mean (max, min) over 100 random runs. The results fol-
low the same trend observed on synthetic data (Figure 5 in
the main paper).
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Figure 2. Linearized fundamental matrix estimation result with
(MBF-MaxCon) and without (MBF-MaxCon-nL) the local expan-
sion step. Error in the number of inliers compared to ASTAR-
NAPA-DIPB is in the left and the computation times in the right.
The experiments were repeated 100 times and the error-bars indi-
cate the 0.05-th and0.95-th percentile.
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