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In this appendix, we first provide more experimental details
in Sec. A. Then, we show more results in Sec. B.

A. Experimental Details
We first introduce an additional dataset: AVE [8] in

Sec. A.1. Then, we describe audio and visual data process-
ing in Sec. A.2. In addition, we give more details of audio
and visual networks in Sec. A.3. Furthermore, we define the
used five different audio-visual fusion functions in Sec. A.4.
Finally, more training details are provided in Sec. A.5.

A.1. The AVE Dataset

Besides the MIT-MUSIC and Kinetics-Sounds datasets,
we also explore audio-visual model robustness using an-
other popular audio-visual dataset: AVE [8] to further vali-
date our findings. It consists of 4,143 unconstrained videos
spanning 28 event categories. As in [8], we divide the data
into train/val/test splits of 3,339/402/402 videos, respec-
tively.

A.2. Data Processing

The sampling rates of sounds and video frames are
11025 Hz and 8 fps, respectively. For each video, we sam-
ple a 6s audio clip with 1 video frame at the center posi-
tion of the sound as the inputs of our audio-visual models.
We use a pre-trained ResNet18 [3] to extract visual features

Figure 1: A Pytorch implemenation of our audio network.

and a 1-D convolution-based model to extract audio features
from input audio waveforms.

A.3. Architectures

Audio Net: Our audio network takes 6s audio waveforms
as inputs and output 512-D audio feature vectors by a global
max pooling after the 1-D Convolution-based network as il-
lustrated in Figure 1. The network consists of 8 convolu-
tional layers in 4 building blocks.
Visual Net: We use the ResNet18 [3] removing the final
Fully-Connected (FC) layer as our visual network. We also
obtain 512-D feature vectors by a global max pooling. But,
in the weakly-supervised sound source visual localization,
we remove the global max pooling to obtain a 2-D feature



Dataset Attack Methods 3AV 7A 7V 7AV Avg. Unimodal 3A Unimodal 3V

AVE
FGSM [2] 40.55 24.88 8.71 24.71
PGD [5] 70.40 20.15 11.44 1.99 11.19 29.85 65.17
MIM [1] 15.17 10.20 0.25 8.54

Table 1: Audio-visual event recognition accuracy on the AVE dataset under different attack methods (εa, εv = 0.06). 7A,
7V, and 7AV denote that only audio, only visual, and both audio and visual inputs for our audio-visual network are attacked,
respectively. The symbol: 3 means that inputs are clean. The baselines: Unimodal 3A and Unimodal 3V models are two
single-modality models.

0 2 4 6 8 10 12

10

20

30

40

50

60

70 fgsm-A
pgd-A
mim-A
unimodal V

(a) Audio Attack

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70 fgsm-V
pgd-V
mim-V
unimodal A

(b) Visual Attack

0 2 4 6 8 10 12

0

10

20

30

40

50

60

70 fgsm-AV
fgsm-unimodal A
fgsm-unimodal V
pgd-AV
pgd-unimodal A
pgd-unimodal V
mim-AV
mim-unimodal A
mim-unimodal V

(c) Audio-Visual Attack

Figure 2: Adversarial robustness against multimodal attacks on the Kinetics-Sounds. The x-axis denotes the attack strength
(×10−3) and we set εa = εv in the audio-visual attack for a better illustration. For the single-modality attack, the attacked
audio-visual models in (a) and (b) still have clean visual and audio information, respectively. When adversarial perturbations
become larger, joint perception models with one attacked modality become even worse than the corresponding individual
perception models. Thus, an unreliable modality could weaken perception by the other modality in audio-visual models. A
similar observation can also be found in the audio-visual attack (e.g., -AV vs. -unimodal V).

map for each frame.

A.4. Audio-Visual Fusion Methods

We use 5 audio-visual fusion methods to explore how
different fusion methods affect audio-visual event recogni-
tion against multimodal attacks. Here are formulations of
the 5 fusion functions. They use an audio feature: fa and a
visual feature: fv as inputs and obtain a fused feature: fav .
Sum: It directly sums up the features from the both modal-
ities: fav = fa + fv .
Concat: The Concat: fav = [fa; fv] concatenates the audio
and visual features.
FiLM: The FiLM [7] learns to adaptively fuse two different
modalities by feature modulations. In our implementation,
we use the audio feature as the input of transformation for
fusion: fav = α(fa) · fv + β(fa), where α(·) is a FC layer
and β(·) is an identity mapping.
Gated-Sum: The Gated-Sum [4] uses audio and visual fea-
tures to compute two gates to fuse feature from the other
modality, respectively. They can be computed as:

f1 = σ(fa) · fv, (1)
f2 = σ(fv) · fa, (2)

where the σ(·) is the Sigmoid function. The fused features:
f1 and f2 are then combined by the Sum: fav = f1 + f2.
Gated-Concat: The Gated-Concat is similar to the the
Gated-Sum. It also computes f1 and f2. But, it fuses by
a concatenation: fav = [f1; f2].

A.5. Implementation Details

We train our network with the standard SGD using 4
NVIDIA 1080TI GPUs. We set the batch size = 48, the
initial learning rate of the audio network = 1e − 4, the
initial learning rate of the visual net = 1e − 3, the initial
learning rate of the fusion network with the final FC layer
= 1e − 3. The epoch numbers are 100, 30, and 100 for
the MIT-MUSIC, Kinetics-Sounds, and AVE datasets, re-
spectively. The learning rates drop by multiplying 0.1 af-
ter every 30 epochs for the MIT-MUSIC and AVE and ev-
ery 10 epochs for the Kinetics-Sounds. For PGD [5] and
MIM [1], we perform 10-step iterative attacks. The pa-
rameters: λa = λv = 0.1. In addition, when we use our
external feature memory banks to defend against attacks,
we found averaging the denoised and original features can
obtain better performance since there are also optimization
errors when computing the audio and visual coefficients.
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(c) Audio-Visual Attack

Figure 3: Adversarial robustness against multimodal attacks on the AVE. The x-axis denotes the attack strength (×10−3) and
we set εa = εv in the audio-visual attack for a better illustration.

Defense (AVE) 3AV 7A 7V 7AV Avg RI

None 70.40 40.55 24.88 8.71 24.71 0
Unimodal A 29.85 1.24 29.85 1.24 10.77 -54.49
Unimodal V 65.17 65.17 17.66 17.66 33.50 3.56
PCL [6] 61.94 61.69 17.91 17.91 32.50 -0.67
MaxSim 71.64 35.82 25.62 16.42 25.95 2.48
MinSim 70.90 57.21 25.37 21.39 34.66 10.45
ExFMem 71.39 44.78 28.11 10.95 27.94 4.22
MinSim+ExFMem 71.39 58.21 29.35 26.62 38.06 14.34

Table 2: Audio-visual event recognition accuracy on the
AVE dataset with different defense methods. Here, we use
the FGSM (εa, εv = 0.06) to generate audio and visual ad-
versarial examples. Some models (e.g., Unimodal A, Uni-
modal V, and PCL) highly rely on only one modality, which
absolutely makes them more invulnerable to adversarial at-
tacks for another modality. However, they will fail to obtain
good performance on clean audio and visual inputs. Top-2
results are highlighted.

B. Experimental Results

To further validate our findings, we show more experi-
mental results on audio-visual model robustness under mul-
timodal attacks in Sec. B.1, sound source localization under
attacks in Sec. B.2, and audio-visual defense in Sec. B.3.

B.1. Robustness under Multimodal Attacks

We first show the audio-visual event recognition re-
sults on the AVE dataset with different attack methods in
the Table 1. Similar to observations on the MIT-MUSIC
and Kinetics-Sounds, our audio-visual model can be easily
fooled, and the joint perception models: 7A (with clean vi-
sual) and 7V (with clean audio) are worse than Unimodal
3V and 3A, respectively. Thus, audio-visual integration
could even weaken event recognition when audio or visual
inputs are attacked. We further illustrate results of adversar-
ial robustness against multimodal attacks with different at-
tack strengths on the Kinetics-Sounds and AVE in Figure 2
and Figure 3, respectively. The results can further validate

our findings that audio-visual integration may not always
strengthen the audio-visual model robustness under multi-
modal attacks and the adversarial robustness of the audio-
visual models highly depends on the reliability of the mul-
tisensory inputs.

B.2. Sound Source Localization under Attacks

We show more sound source localization results under
multimodal attacks in Figure 4. A large range of events
(e.g., chopping wood, playing xylophone, frying, baby cry-
ing, running bus) are covered. We can see that the weakly-
supervised sound source visual localization model is sus-
ceptible to both single-modality and audio-visual attacks.

B.3. Audio-Visual Defense

We show defense results against the FGSM attack on the
AVE dataset in Table 2. Similar to results on the Kinetics-
Sounds and MIT-MUSIC datasets, the proposed: MinSim
and ExFMem can improve audio-visual model robustness
against both single-modality and audio-visual attacks and
our full model outperforms the compared baselines without
the modality bias issue.

Since the MIM is the strongest attacker among the three
methods, we provide audio-visual defense results against
the MIM attacker on the three different datasets in Table 3
to further demonstrate the effectiveness of our audio-visual
defense method. We can see that our method can still im-
prove audio-visual model robustness against the powerful
MIM attacker, and it outperforms all of the compared ap-
proaches in terms of the RI on the MIT-MUSIC and AVE.
The results further demonstrate that our defense method can
generalize to different datasets and defend against differ-
ent attackers. Moreover, we can find that the two models:
Unimodal V and PCL, achieve lower performance on the
Kinetics-Sounds for clean audio and visual inputs due to the
modality bias problem, while they achieve “good” defense
results against attacks by the shortcut. The results suggest
us to further punish the biased audio-visual models when
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Figure 4: Visualizing sound sources under multimodal attacks. The adversarial perturbations in attacked video frames are
almost imperceptible. Both single-modality and audio-visual attacks can successfully fool the weakly supervised sound
source visual localization model without using sounding object location supervision.
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Figure 5: t-SNE visualizations of audio (clean and attacked) and visual embeddings from w/o MinSim and w/ MinSim models
on the MIT-MUSIC. We use symbols: N, •, and ? to denote visual, audio, attacked audio modalities, respectively. Different
colors refer to different categories. Our MinSim model can learn more intra-class compact and separable embeddings in
separated unimodal spaces. Thus, the attacked audio samples generated by w/ MinSim are much closer to clean samples in
the same categories (e.g., violin, tuba, flute) than the adversarial audio examples obtained by the w/o MinSim.

visual

audio
attacked visual

w/o MinSim w/  MinSim

Figure 6: t-SNE visualizations of audio and visual (clean and attacked) embeddings from w/o MinSim and w/ MinSim models
on the MIT-MUSIC. We use symbols: N, •, and ? to denote visual, audio, attacked visual modalities, respectively. Different
colors refer to different categories. The attacked visual samples generated by w/ MinSim are much closer to clean samples in
the same categories (e.g., accordion, xylophone, and flute) than the adversarial visual examples obtained by the w/o MinSim.

we evaluate audio-visual defense methods.
We show t-SNE visualizations of both attacked audio and

attacked visual embeddings from w/o MinSim and w/ Min-
Sim in Figure 5 and Figure 6, respectively. We can see that
the attacked samples generated by w/ MinSim are closer
to clean samples in the same categories than the attacked
sampled produced by w/o MinSim, especially for the at-
tacked audio embedding in Figure 5, since the w/ MinSim
can force our audio-visual models to strengthen multimodal
dispersion and unimodal compactness. The results can fur-
ther validate the effectiveness of the proposed MinSim de-
fense mechanism.
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