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1. Appendix
In this section, we introduce and prove the theorems

mentioned in the main text of this paper.

A. ON SUFFICIENCY
Consider x ∈ X and y as the input data and the label,

and let the v be an observation containing the same amount
of predictive information regarding y as x does, and let
z be the corresponding representation produced by an
information bottleneck.

Hypothesis:

(H1) v is sufficient for y, i.e., I(v; y) = I(x; y)

Thesis:

(T1) min I(v; y)− I(z; y) ⇐⇒ minH(y|z)−H(y|v)

(T2) reducing DKL [p(y|v)||p(y|z)] is consistent with
preserving sufficiency of z for y.

Proof.

Based on the definition of mutual information [1]:

I(v; z) := H(v)−H(v|z), (1)

where H(v) denotes Shannon entropy, and H(v|z) is the
conditional entropy of z given v [1]. Based on the symmetry
of mutual information, we have:

I(v; z) = I(z; v), (2)

which indicates that the requirement of sufficiency is equiv-
alent to:

I(v; y) = I(z; y)

⇐⇒ I(y; v) = I(y; z)

⇐⇒ H(y)−H(y|v) = H(y)−H(y|z)
⇐⇒ −H(y|v) = −H(y|z). (3)

Therefore, we have:

min I(v; y)− I(z; y) ⇐⇒ minH(y|z)−H(y|v), (4)

which proves (T1). Based on the definition of conditional
entropy, for any continuous variables v, y and z, we have:

I(v; y)− I(z; y) = H(y|z)−H(y|v) =

−
∫
p(z)dz

∫
p(y|z) log p(y|z)dy

+

∫
p(v)dv

∫
p(y|v) log p(y|v)dy =

−
∫∫

p(z)p(y|z) log
[
p(y|z)
p(y|v)

p(y|v)
]
dzdy

+

∫∫
p(v)p(y|v) log

[
p(y|v)
p(y|z)

p(y|z)
]
dvdy. (5)

By factorizing the double integrals in Eq. (5) into an-
other two components, we show the following:∫∫

p(z)p(y|z) log
[
p(y|z)
p(y|v)

p(y|v)
]
dzdy =

∫∫
p(z)p(y|z) log p(y|z)

p(y|v)
dzdy︸ ︷︷ ︸

termZ1

+

∫∫
p(z)p(y|z) log p(y|v)dzdy︸ ︷︷ ︸

termZ2

. (6)

Conduct similar factorization for the second term in
Eq.(5), we have:∫∫

p(v)p(y|v) log
[
p(y|v)
p(y|z)

p(y|z)
]
dvdy =

∫∫
p(v)p(y|v) log p(y|v)

p(y|z)
dvdy︸ ︷︷ ︸

termV1

+

∫∫
p(v)p(y|v) log p(y|z)dvdy︸ ︷︷ ︸

termV2

. (7)
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Integrate term Z1 and term V1 over y:

Z1 =

∫
p(z)DKL[p(y|z)‖p(y|v)]dz, (8)

V1 =

∫
p(v)DKL[p(y|v)‖p(y|z)]dv, (9)

where DKL denotes KL-divergence. Integrate term Z2 and
term V2 over z and v respectively, we have:

Z2 =

∫
p(y) log p(y|v)dy. (10)

V2 =

∫
p(y) log p(y|z)dy (11)

In the view of above, we have the following:

I(v; y)− I(z; y) = H(y|z)−H(y|v) =∫
p(v)DKL[p(y|v)‖p(y|z)]dv +

∫
p(y) log

[
p(y|z)
p(y|v)

]
dy

−
∫
p(z)DKL[p(y|z)‖p(y|v)]dz (12)

Based on the non-negativity of KL-divergence, Eq. (12)
is upper bounded by:∫

p(v)DKL[p(y|v)‖p(y|z)]dv +
∫
p(y) log

[
p(y|z)
p(y|v)

]
dy.

(13)

Equivalently, we have the upper bound as:

Ev∼Eθ(v|x)Ez∼Eφ(z|v)[DKL[p(y|v)‖p(y|z)]]

+ Ev∼Eθ(v|x)Ez∼Eφ(z|v)

[
log

[
p(y|z)
p(y|v)

]]
, (14)

where θ, φ denote the parameters of the encoder and the in-
formation bottleneck. Therefore, the objective of preserving
sufficiency of z for y can be formalized as:

min
θ,φ

Ev∼Eθ(v|x)Ez∼Eφ(z|v)

[
DKL[Pv||Pz] + log

[
Pz
Pv

]]
,

(15)

in which Pz = p(y|z) and Pv = p(y|v) denote the predicted
distributions of the representation and observation.

Clearly, the objective of preserving sufficiency is equiv-
alent to minimize the discrepancy between the predicted
distributions of v and z. Notice that this can be achieved
by minimizingDKL(Pv||Pz), which can explicitly approxi-
mate p(y|z) to p(y|v) and implicitly reduce the second term
in Eq.(15) in the same time. At the extreme, the represen-
tation z retrieves all label information contained in the suf-
ficient observation v, indicating that z is sufficient for y as
well. Formally, we have:

lim
Pz→Pv

DKL[Pv||Pz] +
∫
p(y) log

[
Pv
Pz

]
dy = 0 (16)

Based on Eq. (12) , we show the following:

lim
Pz→Pv

I(v; y)− I(z; y) = lim
Pz→Pv

H(y|v)−H(y|z) = 0

(17)
which reveals that minimizing DKL[Pv||Pz] is consistent
with the objective of preserving sufficiency of the represen-
tation. Thus (T2) holds.

B. ON CONSISTENCY
Consider v1, v2 as two sufficient observations of the

same objective x from different viewpoints or modals,
and let y be the label. Let z1, z2 be the corresponding
representations obtained from an information bottleneck.

Hypothesis:

(H1) both v1, v2 are sufficient for y

(H2) z1, z2 are in the same distribution

Thesis:

(T1) minimizing DKL[p(y|v2)‖p(y|z1)] is consistent
with the objective of eliminating task-irrelevant informa-
tion encoded in I(z1; v2), and is able to preserve those
predictive and view-consistent information, vice versa for
DKL[p(y|v1)‖p(y|z2)] and I(z2; v1)

(T2) minimizing DJS [p(y|z1)‖p(y|z2)] is consistent
with the objective of elimination of view-specific informa-
tion for both z1 and z2

(T3) performing VCD and VML can promote view-
consistency between z1 and z2

Proofs.

By factorizing the mutual information between the data
observation v1 and its representation z1, we have:

I(v1; z1) = I(v1; z1|v2) + I(z1; v2), (18)

where I(z1; v2) and I(v1; z1|v2) denote the view-consistent
and view-specific information, respectively.

Furthermore, by using the chain rule of mutual infor-
mation, which subdivides I(z1; v2) into two components
(proofs could be found in [2]), we have:

I(z1; v2) = I(v2; z1|y) + I(z1; y) (19)

combining with Eq. (18), we show the following:

I(z1; v1) = I(v1; z1|v2)︸ ︷︷ ︸
view-specific

+ I(v2; z1|y)︸ ︷︷ ︸
superfluous

+ I(z1; y)︸ ︷︷ ︸
predictive

, (20)
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Based on Appendix A, reducing DKL[Pv2 ||Pz1 ], where
Pz1 = p(y|z1),Pv2 = p(y|v2), can minimize I(v2; z1|y)
and maximize I(z1; y) in the same time, thus we conclude
that (T1) holds.

Considering that z1, z2 ∈ Z, I(v1; z1|v2) can be ex-
pressed as:

I(v1; z1|v2) = Ev1,v2∼Eθ(v|x)Ez1,z2∼Eφ(z|v)

[
log

p(z1|v1)

p(z1|v2)

]
= Ev1,v2∼Eθ(v|x)Ez1,z2∼Eφ(z|v)

[
log

p(z1|v1)p(z2|v2)

p(z2|v2)p(z1|v2)

]
= DKL[p(z1|v1)||p(z2|v2)]−DKL[p(z2|v1)||p(z2|v2)]

≤ DKL[p(z1|v1)||p(z2|v2)]. (21)

Notice this bound is tight whenever z1 and z2 produce
consistent encodings [2], which can be assured by the pro-
posed VCD and is visualized in the main body of this paper.
On the other hand, since y is constant with respect to the pa-
rameters to be optimized, we utilize Eq. (22) to approximate
Eq. (21):

Ev1,v2∼Eθ(v|x)Ez1,z2∼Eφ(z|v) [DKL[Pz1 ||Pz2 ]] , (22)

in which Pz1 = p(y|z1) and Pz2 = p(y|z2) denote the
predicted distributions. Based on the above analysis, we
conclude that I(v1; z1|v2) can be minimized by reducing
DKL[Pz1 ||Pz2 ]. Similarly, we introduce the following ob-
jective to minimize I(v2; z2|v1).

Ev1,v2∼Eθ(v|x)Ez1,z2∼Eφ(z|v) [DKL[Pz2 ||Pz1 ]] , (23)

For simplicity, we apply Eq. (24) to eliminate the view-
specific information for both z1 and z2.

min
θ,φ

Ev1,v2∼Eθ(v|x)Ez1,z2∼Eφ(z|v) [DJS [Pz1 ||Pz2 ]] , (24)

where DJS denotes the Jensen-Shannon divergence. Thus
(T2) holds.

Finally, according to [2], I(z1; y) = I(v1v2; y) when the
following hypotheses stand: z1 is a representation of v1 and
I(y; z1|v1v2) = 0, both v1 and v2 are sufficient for y, z1

is sufficient for v2. As a consequence of data processing
inequality, the amount of information encoded in z1 cannot
be more than the joint observation, i.e. I(y; z1|v1v2) ≡ 0.
Since sufficiency of v1 and v2 for y is consistent with the
given task, it is widely adopted as an established assump-
tion. Notably, sufficiency of z1 for v2 can be achieved
by preserving view-consistent information while simulta-
neously eliminating the view-specific details, which corre-
spond to the proposed VCD and VML, respectively. There-
fore, (T3) holds.
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