Farewell to Mutual Information: Variational Distillation for Cross-Modal Person
Re-Identification

1. Appendix

In this section, we introduce and prove the theorems
mentioned in the main text of this paper.

A. ON SUFFICIENCY

Consider x € X and y as the input data and the label,
and let the v be an observation containing the same amount
of predictive information regarding y as = does, and let
z be the corresponding representation produced by an
information bottleneck.

Hypothesis:

(H1) v is sufficient for y, i.e., I(v;y) = I(z;y)
Thesis:

(Ty) min I (v;y) — I(2;9y) <= min H(y|z) — H(yv)

(T2) reducing Dgr, [p(y|v)||lp(y|z)] is consistent with
preserving sufficiency of z for y.

Proof.

Based on the definition of mutual information [1]:

I(v; z) := H(v) — H(v|2), (1

where H(v) denotes Shannon entropy, and H (v|z) is the
conditional entropy of z given v [1]. Based on the symmetry
of mutual information, we have:

I(v;2) = I(2;v), 2)

which indicates that the requirement of sufficiency is equiv-
alent to:

I(viy) = I(z;y)

= I(y;v) = I(y; 2)

<= H(y) — H(ylv) = H(y) — H(yl|2)

< —H(ylv) = —H(yl2). 3)

Therefore, we have:

minI(v;y) — I(z;y) <= minH(y|z) — H(ylv), @)

which proves (77). Based on the definition of conditional
entropy, for any continuous variables v, y and z, we have:

H{(y|z) — H(ylv) =

/ / (y|2) log p(y|2)dy
+ [ pwyo / p(ylv) log p(ylv)dy =
ot ]
+ [ 1og[ (zl L (ylz)} dudy. 5)

By factorizing the double integrals in Eq. (5) into an-
other two components, we show the following:

[ 2] -

// z) log (y|z)dzdy +
p(ylv)
term Z4
// z)log p(ylv)dzdy . (6)
term Zo

Conduct similar factorization for the second term in
Eq.(5), we have:

// p(ylv) log H‘ZBP(ZJIZ)] dvdy =
)p(y|v) log Py |U)dvdy +
p(ylz)

term Vi

/ / p(y[v) log p(y|z)dvdy . @)

term Va




Integrate term Z; and term V} over y:

7 = / p() Dl lpwl)ldz,  ®)

Vi = / p(0)Drclpl) PN, ©)

where D1, denotes KL-divergence. Integrate term Z5 and
term V5 over z and v respectively, we have:

Zéz/f@ﬂ%p@@ﬂy (10

Va= [ plw)logplslz)dy (an
In the view of above, we have the following:
I(vsy) — I(zy) = H(y|z) — H(ylv) =

/ p()Drcrlp(ylv)llp(yl2)ldv + / Ply)log {igm w

- / p(2) Dicr[p(y]2) [p(y]v)]dz (12)

Based on the non-negativity of KL-divergence, Eq. (12)
is upper bounded by:

[ pDalptlatolz)do + [ p10g [m")} dy.

p(ylv)
(13)
Equivalently, we have the upper bound as:
]EUNEQ (v|x)Ez~E¢(z|v) [DKL [p(y|1}> Hp(y‘z)]]
ply|z
+EUNE9('U\$)E2~E¢(Z|U) |:10g |:p§y|v§:|:| ) (14)

where 6, ¢ denote the parameters of the encoder and the in-
formation bottleneck. Therefore, the objective of preserving
sufficiency of z for y can be formalized as:

. P,
Igltﬁn]vaEg(vw)Esz(p(zW) |:DKLUP1)||PZ] + log |:IPU:|:| )

15)

in which P, = p(y|z) and P,, = p(y|v) denote the predicted
distributions of the representation and observation.

Clearly, the objective of preserving sufficiency is equiv-
alent to minimize the discrepancy between the predicted
distributions of v and z. Notice that this can be achieved
by minimizing D 1, (P, ||P,), which can explicitly approxi-
mate p(y|z) to p(y|v) and implicitly reduce the second term
in Eq.(15) in the same time. At the extreme, the represen-
tation z retrieves all label information contained in the suf-
ficient observation v, indicating that z is sufficient for y as
well. Formally, we have:

P,
lim Dy [Py|P.] + / ply) log H dy=0 (16)
P,—P, P,

Based on Eq. (12) , we show the following:

pim I(v;y) —I(zy) = lim H(ylv) - H(ylz) =0
a7
which reveals that minimizing D 1 [P,||P,] is consistent

with the objective of preserving sufficiency of the represen-
tation. Thus (7%) holds.

B. ON CONSISTENCY

Consider vy, vy as two sufficient observations of the
same objective x from different viewpoints or modals,
and let y be the label. Let 21,29 be the corresponding
representations obtained from an information bottleneck.

Hypothesis:

(Hy) both v1, vo are sufficient for y
(H3) z1, 29 are in the same distribution
Thesis:

(Ty) minimizing Dy [p(y|vs)|p(y|z1)] is consistent
with the objective of eliminating task-irrelevant informa-
tion encoded in I(z1;v2), and is able to preserve those
predictive and view-consistent information, vice versa for

Drrlp(ylvi)lp(ylz2)] and I(22;5v1)

(T5) minimizing Dys[p(y|z1)|lp(y|z2)] is consistent
with the objective of elimination of view-specific informa-
tion for both z; and 25

(T5) performing VCD and VML can promote view-
consistency between z; and 2z

Proofs.

By factorizing the mutual information between the data
observation v; and its representation z;, we have:

I(vy;21) = I(v1; 21|v2) + I(215v2), (18)

where I(z1;v2) and I (v1; 21 |v2) denote the view-consistent
and view-specific information, respectively.

Furthermore, by using the chain rule of mutual infor-
mation, which subdivides I(z1;v2) into two components
(proofs could be found in [2]), we have:

I(21502) = I(v2; 21ly) + 1(2159) (19)
combining with Eq. (18), we show the following:

I(z15v1) = I(v1; 21|v2) + I(va; 21]y) + I(215y), (20)
—_——— ———— N———

view-specific superfluous predictive



Based on Appendix A, reducing D [Py, ||P.,], where Courville. Mutual information neural estimation. In ICML,

P.. = p(y|z1),Py, = p(y|v2), can minimize I(ve; 21|y) 2018. 1
and maximize I(z1;y) in the same time, thus we conclude [2] Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman,
that (71) holds. and Zeynep Akata. Learning robust representations via multi-
Considering that 21,2 € 7Z, I(v1;21|v2) can be ex- view information bottleneck. In /CLR, 2020. 2, 3
pressed as:
p(z1]v1)

I(Ul; Z1|UZ) = E'Ulq,’UQNEQ(’UlI)EZl,ZQNEqb (z]v) |:10 Zl|'02 :l

p(21|v1)p(22]v2)
= Bor oo (vle) B, 2o o elo) [lo p(2z2]v2)p(21|v2)
= Dir[p(z1]v1)|p(z2]v2)] = DrL[p(z2]v1)][p(22]v2)]
< Drrlp(z1]v1)l[p(22]v2)]. @D

Notice this bound is tight whenever z; and 29 produce
consistent encodings [2], which can be assured by the pro-
posed VCD and is visualized in the main body of this paper.
On the other hand, since y is constant with respect to the pa-
rameters to be optimized, we utilize Eq. (22) to approximate
Eq. 21):

Evl,v2~E9(v\z)Ez1,zz~E¢(z|v) [DKL [le ||PZ2H ) (22)

in which P,;, = p(y|z1) and P,, = p(y|z2) denote the
predicted distributions. Based on the above analysis, we
conclude that I(vq; 21|vz2) can be minimized by reducing
Dgr[P,,||P,,]. Similarly, we introduce the following ob-
jective to minimize I (vg; 22|v1).

E’Ul7'U2NE9('U‘IC)E21722NE¢(Z|U) [DKL [Pzz ||IP)Z1H ) (23)

For simplicity, we apply Eq. (24) to eliminate the view-
specific information for both z; and 2.

rgl’gl Evl,vgwEg (UlI)Ezl zZa~vEg(z|v) [DJS []le ‘ |P22]] , (24)
where D ;g denotes the Jensen-Shannon divergence. Thus
(T») holds.

Finally, according to [2], I(z1;y) = I(v1v2;y) when the
following hypotheses stand: z; is a representation of v, and
I(y; z1|v1v2) = 0, both v; and vy are sufficient for y, z
is sufficient for vo. As a consequence of data processing
inequality, the amount of information encoded in z; cannot
be more than the joint observation, i.e. I(y;z1|vivs) = 0.
Since sufficiency of v; and vy for y is consistent with the
given task, it is widely adopted as an established assump-
tion. Notably, sufficiency of z; for vy can be achieved
by preserving view-consistent information while simulta-
neously eliminating the view-specific details, which corre-
spond to the proposed VCD and VML, respectively. There-
fore, (13) holds.
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