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1. The derivation of formula 3
In this section, we provide detailed derivation of formula (3) in the main file. That is to show

P
{
z̃
(n)
θ 6= 0

}
= Sig

(
log(pθ/(1− pθ))− β log

−γ
ζ

)
. (1)

As shown in formula (2) in the main file,

sθ(u) = Sig((log u− log(1− u) + log(pθ/(1− pθ)))/β),
s̃θ(u) = sθ(u)(ζ − γ) + γ,

z̃θ = min(1,max(0, s̃θ(u)),

(2)

where u is the random variable of uniform distribution U(0, 1); Sig(·) represents the sigmoid function; ζ > 0 and γ < 0 are
two parameters to extend the support of z̃ to be [0, 1]; and pθ is the importance of the parameter θ. The hyper-parameter β
controls the approximation precision of z̃θ to zθ.

From equations (2), we have that

P
{
z̃
(n)
θ 6= 0

}
= 1− P

{
z̃
(n)
θ = 0

}
= 1− P {(s̃θ(u) ≤ 0)} . (3)

According to the cumulative distribution function (CDF) of s̃θ(u) [4] below

Q(s̃θ(u)) = Sig((log(
s̃θ(u)− γ
ζ − s̃θ(u)

))β − log(pθ/(1− pθ))), (4)

it is easy to show that

P
{
z̃
(n)
θ 6= 0

}
= 1− P {(s̃θ(u) ≤ 0)} = 1−Q(0) = Sig

(
log(pθ/(1− pθ))− β log

−γ
ζ

)
. (5)

2. Overhead of permissions
In this section, we analyze the overhead of permissions Sm̂’s (m̂ = 1, ...,M ) discussed in Section 3.3 of the main file.

That is to show the size of a permission Sm̂ in bits is

(bκ + 64L)m̂+
16Lm̂

M
φ. (6)
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As introduced in Section 3.3, a permission Sm̂ = {Êm,um,vm, κm,µ,σ}m̂−1m=0. Suppose the size of an integer and a float
number in bits are 16 and 32, respectively. Consider each item {Êm,um,vm, κm,µ,σ}. The size of um (vm) in bits is 32L
by noticing that um (vm) contains L float numbers. From the equations (7)

Êm = {Êl
m}Ll=1, Êl

m = {eθ}θ∈Θ̂l
m
, (7)

in the main file, where eθ is a 2-D tuple to locate which layer θ belongs to and the position of θ in this layer. To represent
one eθ, we need two integers. Since the first coordinate of eθ in Θ̂l

m is the same, the overhead of Êl
m thus is 16 + 16φ/M

(note that Θ̂l
m contains φ/M elements). Therefore, the total size of items Êm, um, vm, and κm is

64L+ 16 +
16Lφ

M
+ bκ, (8)

where bκ is the bit size of the secret key κ, and generally is determined by the key generator. Both of the mean values µ and
the standard deviations σ contain L float numbers. To this end, the overhead of the permission Sm̂ in bits is

(bκ + 16)m̂+ 64L(m̂+ 1) +
16Lm̂

M
φ. (9)

3. Proof of Theorem 1
In this section, we provide the proof for Theorem 1. Before diving into the proof, let us introduce the definition of

equivocation [1, 5] proposed by Shannon used for measure the information leakage.

DEFINITION. Let H(Ŵl) be the entropy of samples in Ŵl. Let also I(Ŵl; Θ̃l) be the mutual information between Ŵl

and Θ̃l. The equivocation of Ŵl by observing Θ̃l is defined as

E(Ŵl, Θ̃l) = H(Ŵl)− I(Ŵl; Θ̃l). (10)

Remark 1: A large value of E(Ŵl, Θ̃l) implies that a slight information leakage of Ŵl when observing Θ̃l and vice
versa.

Remark 2: For the convenience of the theoretical justification, we modify the definition (10) of equivocation into another
form Ê(Ŵl, Θ̃l) = I(Ŵl; Θ̃l)/H(Ŵl) so that the value of Ê(Ŵl, Θ̃l) is positively correlated with the information leakage
of Ŵl. Specifically, when Ê(Ŵl, Θ̃l)→ 0, the information leakage of Ŵl via observing Θ̃l is negligible. In this case, the
original equivocation E(Ŵl, Θ̃l) tends to H(Ŵl), which is the maximum of the E(Ŵl, Θ̃l). We call Ê(Ŵl, Θ̃l) modified
equivocation in the rest of the discussion.

To prove Theorem 1, we briefly discuss the distribution of dominated parameters Θ̂l, their ciphertext Ĉl, and the noise
Ŵl = Ĉl − Θ̂l added on Θ̂l. Recalling the encryption of the dominated parameters Θ̂l, both parameters in Θ̂l and their
ciphertext Ĉl following the same Gaussian distribution. More precisely, let θ̂ and ĉ be two random variables of the Gaussian
distribution N (·|µl, σl), where µl and σl are mean value and standard deviation of parameters in the l-th of the pretrained
model FΘ. Θ̂l and Ĉl thus are samples drawn from θ̂ and ĉ, respectively. Now, considering samples wi’s in Wl = Ĉl− Θ̂l,
it is quit clear that wi’s are drawn from the following random variable,

ŵ = ĉ− θ̂, ŵ ∼ N (ŵ|0, 2σl). (11)

Moreover, given θ̂j ∈ Θ̂l, the conditional distribution of random variable ŵ|θ̂j = ĉ− θ̂j follows the distribution below

ŵ|θ̂j ∼ N (ŵ|µl − θ̂j , σl). (12)

Upon having the distributions (11) and (12), we now prove Theorem 1 in the main file.

Theorem 1. The modified equivocation between Ŵl and Θ̃l is of order |Ŵl|−1/2. That is

Ê(Ŵl, Θ̃l) = O(|Ŵl|−1/2), (13)

as |Ŵl| → ∞.
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Proof. By using the proposition of mutual information, we have

Ê(Ŵl, Θ̃l) =
I(Ŵl; Θ̃l)

H(Ŵl)
= 1− H(Ŵl|Θ̃l)

H(Ŵl)
. (14)

Since Ŵl and Θ̃l are samples of continuous random variables, we approximate the discrete entropy H(Ŵl) and H(Ŵl|Θ̃l)
with unequal quantization intervals,4ŵi

and4θ̃i as follows [2].

H(Ŵl|Θ̃l) =

|Θ̃l|−1∑
j=1

p(θ̃j)H(Ŵl|θ̃j)4θ̃j ,

=

|Θ̃l|−1∑
j=1

p(θ̃j)

− |Ŵl|−1∑
i=1

p(ŵi|θ̃j) log
(
p(ŵi|θ̃j)4ŵi

)
4ŵi

4θ̃j ,
=

|Θ̃l|−1∑
j=1

p(θ̃j)

−
|Ŵl|−1∑

i=1

p(ŵi|θ̃j) log(p(ŵi|θ̃j))4ŵi

4θ̃j −
|Ŵl|−1∑

i=1

p(ŵi|θ̃j)4ŵi
log(4ŵi

)

4θ̃j
 ,

(15)

and

H(Ŵl) = −
|Ŵl|−1∑
i=1

p(ŵi) log(p(ŵi)4ŵi
)4ŵi

,

= −

|Ŵl|−1∑
i=1

p(ŵi) log(p(ŵi))4ŵi +

|Ŵl|−1∑
i=1

p(ŵi) log(4ŵi)4ŵi

 .

(16)

Here, without loss the generality, we sort Ŵl = {ŵi}|Ŵ
l|

i=1 and Θ̃l = {θ̃i}|Θ̃
l|

i=1 with ascending order. That is, ŵi+1 > ŵi and
θ̃i+1 > θ̃i. Thus,4ŵi

= ŵi+1 − ŵi, and4θ̃j = θ̃j+1 − θ̃j .
According to the definition of definite integral, and note that ŵ ∼ N (ŵ|0, 2σl), as |Ŵl| → ∞, we have

lim
4ŵi
→0
−
|Ŵl|−1∑
i=1

p(ŵi) log(p(ŵi))4ŵi
=

∫ +∞

−∞
−p(ŵ) log(p(ŵ))dŵ,

= −
∫ +∞

−∞
−
exp( ŵ2

4(σl)2
)

2σl
√
2π

log(−
exp( ŵ2

4(σl)2
)

2σl
√
2π

)dŵ,

=
1

2
log(8πe(σl)2).

(17)

Similarly, by noticing that ŵ|θ̂j ∼ N (ŵ|µl − θ̂j , σl) as (12), we have

lim
4ŵi
→0
−
|Ŵl|−1∑
i=1

p(ŵi|θ̃j) log(p(ŵi|θ̃j))4ŵi
=

∫ +∞

−∞
−p(ŵ|θ̃j) log(p(ŵ|θ̃j))dŵ,

=

∫ +∞

−∞
−
exp(− (ŵ+θ̃j−µl)2

2(σl)2
)

σl
√
2π

log(
exp(− (ŵ+θ̃j−µl)2

2(σl)2
)

σl
√
2π

)dŵ,

=
1

2
log(2πe(σl)2).

(18)

3



-1.5 -1 -0.5 0 0.5 1 1.5

0

10

20

30

40

50

60

70

80

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

0

10

20

30

40

50

60

70

80

(b)

Fig. 1: Distribution of parameters of the 1-st layer of VGG19, before and after encrypted.

Here the calculation of integral in (17) and (18) can be found in reference [2]. Therefore,

lim
|Θ̃l|→∞

lim
|Ŵl|→∞

Ê(Ŵl, Θ̃l) = 1− lim
|Θ̃l|→∞

lim
|Ŵl|→∞

H(Ŵl|Θ̃l)

H(Ŵl)
,

= 1− lim
|Θ̃l|→∞

lim
|Ŵl|→∞

|Θ̃l|−1∑
j=1

p(θ̃j)
log(2πe(σl)2)− 2

∑|Ŵl|−1
i=1 p(ŵi|θ̃j) log(4ŵi

)4ŵi

log(8πe(σl)2)− 2
∑|Ŵl|−1
i=1 p(ŵi) log(4ŵi

)4ŵi

4θ̃j ,

= 1− lim
|Θ̃l|→∞

log(2πe(σl)2)−
∑|Θ̃|−1
j=1 p(θ̃j)Eŵ|θ̃j (log(4ŵ))4θ̃j

log(8πe(σl)2)− 2E(log(4ŵ))
,

= 1− log(2πe(σl)2)− 2E(log(4ŵ))
log(8πe(σl)2)− 2E(log(4ŵ))

,

=
log 4

log(8πe(σl)2)− 2E(log(4ŵ))
,

(19)

where E(log(4ŵ)) denotes the expectation of log(4ŵ). Consequently, based on the the Jensen’s inequality, we have

lim
|Θ̃l|→∞

lim
|Ŵl|→∞

Ê(Ŵl, Θ̃l) =
log 4

log(8πe(σl)2)− 2E(log(4ŵ))
,

≤ log 4

log(8πe(σl)2)− log(E(4ŵ)2)
.

(20)

Note that |Ŵl| → ∞ implies |Θ̃l| → ∞. Thus, we have

lim
|Ŵl|→∞

Ê(Ŵl, Θ̃l) ≤ log 4

log(8πe(σl)2)− log(E(4ŵ)2)
. (21)

The upper bound in (21) depends on the term E(4ŵ), which is the average difference between successive Gaussian samples.
The work [3] has pointed out that the term E(4ŵ)→ 0 as |Ŵl| → ∞ with order O(e(|Ŵl|1/4)). Thus log(E(4ŵ)2)→∞
with order O(|Ŵl|1/2). Consequently, we have that Ê(Ŵl, Θ̃l)→ 0 with order O(|Ŵl|−1/2) as |Ŵl| → ∞.

4



Model Epochs Batch Size Optimizer Weight Decay Momentum

VGG19 300 128 SGD 0.005 0.9
DnCNN 50 128 SGD 0.0001 0.9

Table 1: Hyper-parameters for training VGG19 and DnCNN
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Fig. 2: The classification accuracy of the protected VGG19 on CIFAR10 with respect to different percentages of encrypted parameters.
(a) 1-st, 2-nd, 4-th, 5-th, 7-th and 8-th layers are encrypted; (b) 1-st, 2-nd, 9-th, and 12-th layers are encrypted; (c) 1-st, 2-nd, 4-th, and 9-th
layers are encrypted.

3.1. Experimental justification of the imperceptibility of ciphertext

The Theorem 1 theoretically supports the imperceptibility of ciphertext Ĉl of dominated parameters Θ̂l. In this section, we
further empirically demonstrate the imperceptibility of Ĉl by justifying that the noise Ŵl = Ĉl−Θ̂l added on the dominated
parameters Θ̂l will not cause the change of distribution of parameters. Fig. 1 shows the distributions of parameters (the 1-st
layer of VGG19) Θl and its partially encrypted version Θ̃l, in which parameters Θ̂l in Θl are contaminated by Ŵl. As can
be seen, the distribution of parameters Θl is almost the same as that Θ̃l. In other words, attackers cannot distinguish the
original parameters Θl from its partially encrypted version Θ̃l. As a result of this indistinguishability, they cannot capture
the ciphertext Ĉl of Θ̂l from Θ̃l by treating Ĉl as abnormal values out of the distribution of unencrypted parameters.

4. Experimental configurations and more results
In this section, we describe detailed explanations about all the experiments described in Section 5 of the main file. Also,

we provide more experimental results.

4.1. Detailed experimental configurations

Configuration of pretrained models: We consider two CNN models for experiments in the main file: VGG19 for
classification and DnCNN for denoising. We train VGG19 on 30000 images from CIFAR10 and train DnCNN on 300 noisy
images scaled into 180× 180 as the recommendation of the original work [6]. The initial learning rate for training VGG19 is
0.0001 and is decayed by a factor of 0.1 once the epoch reaches one of the milestones [50, 70, 90, 100]. Simialry, for DnCNN,
the learning rate was decayed from 0.1 to 0.0001 with milestones [10, 20, 30]. All experiments are running on the platform
with two GPUs (NVIDIA 1080 8G). Detailed about other hyper-parameters, such as weight decay, of the training of the two
models are listed in Table 1.

Hyper-parameters of our method: The most important hyper-parameter in our method is the weighting factor λ of the
problem (1) in the main file. We choose the weighting factor λ so that the magnitude of the cost term is consistent with that
of the regularization term. More precisely, when solving the problem (1) to 1-st, 2-nd, 5-th, and 9-th layers of VGG19, λ’s
are 0.01, 0.001, 0.0001, and 0.0001, respectively. For considering layers (6-th, 9-th, and 12-th) of DnCNN, λ’s are 0.1, 0.1,
and 0.1. To solve the optimization problem (1), we initialize the importance of parameters, i.e. pθ’s, with equal values 0.5.
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Fig. 3: The denoising performance of the protected DnCNN with respect to different percentages of encrypted parameters. (a) 9-th, 12-th,
and 18-th layers are encrypted; (b) 21-th, 24-th, and 27-th layers are encrypted; (c) 9-th, 15-th, 18-th, and 24-th layers are encrypted.

Clean Noisy (14.15dB) m̂ = 0 (13.85dB) m̂ = 1 (19.45dB) m̂ = 3 (25.04dB) m̂ = 5 (28.28dB)

Clean Noisy (14.15dB) m̂ = 0 (13.76dB) m̂ = 1 (18.87dB) m̂ = 3 (23.33dB) m̂ = 5 (25.68dB)

(a) Clean (b) Noisy (14.15dB) (c) m̂ = 0 (13.80dB) (d) m̂ = 1 (19.57dB) (e) m̂ = 3 (25.92dB) (f) m̂ = 5 (30.3dB)

Fig. 4: Images to illustrate the hierarchical performance of the protected DnCNN. (a) Clean image; (b) Noisy image; (c) The output image
of the protected DnCNN without permission; (d-f) Denoising images of decrypted DnCNN with different permissions Sm̂’s.

Note that samples for solving this problem is the training data of the pretrained model. There also are three parameters β, ζ,
and γ in the problem (1). We set them to be 0.66, 1.1, and −0.1, respectively, as the recommendation of the work in [4].

4.2. Effectiveness of the proposed SE

In Section 5.1 of the main file, we have verified the effectiveness of the proposed SE on protecting VGG19 and DnCNN by
encrypting several layers. Here we provide more experimental results under different encrypted layers to further demonstrate
the effectiveness of the proposed SE. As shown in Fig. 2 (a)-(c), one can see that the classification accuracy of the VGG19
protected by our method degrades to the worst case with less encrypted parameters than that of competing parameter selection
strategies. A similar phenomenon of the protected DnCNN can be observed from Fig. 3 (a)-(c), in which the denoising
performance of DnCNN protected by our SE degrades much faster than DnCNN protected by competitors.
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4.3. Hierarchical performance of the released model

In this section, we provide more visualized results to illustrate the hierarchical performance of the released DnCNN, as
shown in Fig. 4. Similar to the results in Section 5.2 of the main file, the higher the permission m̂, the better the denoising
performance of the decrypted model will show.
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