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A. Architecture details

We outlined the general structure of our model in the
main paper. Here, we provide more technical details about
our network in terms of the generator G, discriminator D,
and the retrieval R branches.

Generator. The generatorG is constructed as a U-Net [9]
architecture consisting of residual blocks [3]. This de-
sign is inspired by existing image-to-image translation mod-
els [1, 14, 7] with similar architectures. We provide the
exact components of our generator in Table 1. For a
given satellite image, G uses residual downsampling blocks
(see Figure 1) that in total reduce the spatial size by a factor
of 64. On the reduced resolution, our bottleneck refines the
features with 6 residual blocks, see Figure 2. The last part
of G then consists of residual upsampling blocks (see Fig-
ure 3) that mirror the downsampling blocks from before,
such that the inputs and outputs of G have the same spa-
tial size. Additionally, we add a self-attention (non-local)
block [12] after the first upsampling block. This strategy
helps to learn global dependencies in the image, as was
shown in prior work [14, 1]. Finally, we use an instance
normalization layer (IN) [10] after each upsampling and
downsampling block and spectral normalization [8] after
each convolution layer.

Discriminator. The discriminator D is designed as a
modified PatchGAN classifier [4], see Table 2. In this con-
text, the satellite-street input pair comprises the real input
whereas the fake input consists of the input satellite and
generated street G(Ips) images. Similarly to the generator,
we use non-local self-attention blocks on the 28x154 reso-
lution. We also again use spectral normalization [8] after
each convolution layer, which regularizes each individual
set of features to a spectral radius of 1. Note, that spectral
normalization is not used after the last convolution layer of
both the generator and discriminator.

Retrieval. The retrieval branch R of our network deter-
mines the corresponding satellite image for a given street
panorama. This is done by finding a global feature encod-
ing for both satellite and street view input images. The local
features for the satellite inputs are not computed here, be-
cause we can reuse the features from the encoder part of the
generator GE(Ips). Specifically, we use the output from
the last residual block in the bottleneck. In order to ob-
tain an equivalent set of features for the street-view input
images, we use a modified ResNet34 [3] feature extractor.
This yields a set of features for both inputs with the same
spatial and channel sizes. Afterward, we convert the local
features of both inputs to global descriptors by using the
spatial attention module SA which we explain in the main
paper.

Generator
Satellite (3, 112, 616)
Conv (32, 112, 616) + IN
(enc1) Resblock Down (64, 56, 308) + IN
(enc2) Resblock Down (128, 28, 154) + IN
(enc3) Resblock Down (256, 14, 77) + IN
Resblock (256, 14, 77) x 6
+ concat (enc3)
Resblock Up (128, 28, 154) + IN
+ concat (enc2)
Non-local Block (256, 28, 154 )
Resblock Up (64, 56, 308) + IN
+ concat (enc1)
Resblock Up (64, 112, 616) + IN
Conv (3, 112, 616) + Tanh

Table 1: Exact technical specifications of our generator G.
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Discriminator

Satellite+Street (6, 112, 616)
4x4 Conv + LeakyReLU(0.1) (64, 56, 308)
4x4 Conv + LeakyReLU(0.1) (128, 28, 154)
Non-local Block (128, 28, 154)
4x4 Conv + LeakyReLU(0.1) (256, 14, 77)
4x4 Conv + LeakyReLU(0.1) (512, 14, 76)
4x4 Conv (1, 14, 75)

Table 2: Exact structure of our discriminator module D.

Figure 1: Residual downsampling blocks.

Figure 2: Residual blocks.

B. Implementation details
We implement our network in PyTorch using Adam opti-

mizer [5]. The momentum parameters β1 and β2 are set to
0.5 and 0.999, respectively, and the learning rate for all three
networks is set to 1e− 4. The resolution of both the ground
images and polar transformed satellite images is 112x616.
Furthermore, we normalized the pixel intensity values to
the interval [-1, 1]. For the weighted soft-margin loss, we
use the exhaustive mini-batch strategy to create the triplets
within a batch. For the batch size B (we choose B = 32),

Figure 3: Residual upsampling blocks.

this strategy sums up the triplet loss for all 2B(B−1) com-
binations of positive and negative pairs, see [11] for more
details. Moreover, we use a hard negative mining strategy
after the loss converged as a fine-tuning step during train-
ing. Specifically, we sort all triplets in the current batch
by relevance, i.e., the loss value, and discard a certain per-
centage of the triplets with the least amount of surplus in-
formation. For the spatial aware feature aggregation, we
use k = 8 attention masks. Finally, we choose the hyper-
parameter from our weighted soft margin loss as α = 10.
During training, we follow the standard protocol for GAN
optimization [2]. In particular, we alternate between up-
dating the weights of each network individually with one
update step per cycle. The gradients for the generator are
coming from both the discriminator and retrieval networks.
Additionally, the weights for the individual loss functions
are set to: λret = 1000, λL1

= 100 and λGAN = 1.

C. Additional qualitative results
Geo-localization. In the localization branch R, our al-
gorithm produces L2 distances between the features of
satellite-street pairs. This means that for a given street im-
age, our algorithm can output a set of the closest satellite
matches and rank them according to plausibility. For a
given street image, the recall-k retrieval accuracy (R@k)
then measures whether the ground-truth satellite pair is
among the first k predicted matches. Here, we visualize
some of the closest satellite images for a given query street
image for examples from CVUSA (see Figure 4) and the
CVACT test set (see Figure 5).

Cross-view synthesis. For a more complete picture, we
show additional qualitative results for satellite-to-street
view synthesis for both considered benchmarks in Figure 6
and Figure 7.
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Figure 4: Geo-localization results on CVUSA [13]. For a given query street view (left), we show the closest satellite matches
produced by our method. Green boxes denote the ground truth match.

Ablation Study. We now assess the qualitative difference
between our full architecture and the ablations ii. and iii. in
Table 3 in the main paper, see Figure 8. Even though the
ablation ii. only slightly underperforms our main pipeline
in terms of the image retrieval task, the synthesized im-
ages are significantly less realistic. The L1 loss itself is
sufficient to represent low frequencies, which yields la-
tent features that represent the overall image structure, but
lacks high frequency details producing blurry images. The
qualitative comparison between ablation iii. and our main
pipeline illustrates that LcGAN synthesizes photo-realistic
street-views. On the other hand, the qualitative difference
between them highlights the importance of using the latent
representation in our full architecture.
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Figure 5: Geo-localization results on the CVACT [6] test set. For each street image, we show the closest five matches
predicted by our method, as well as the ground truth match (green box). Since the coverage of the CVACT dataset is quite
dense, there are at times multiple matches that are considered correct, as long as the distance to the ground truth match is less
than 5 meters (e.g. in the last row, the second satellite image is also a correct match). Our method consistently retrieves not
only the closest match, but also multiple images in the same region which yields a robust localization performance.
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Figure 6: Qualitative cross-view synthesis examples on the CVUSA dataset.

Figure 7: Qualitative examples on the CVACT dataset. The two examples on the left side are from the validation set and the
ones on the right side from the large-scale test set.
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Figure 8: Qualitative comparisons corresponding to the results from our ablation study in Table 3 in the main paper. We show
the synthesized images for three different examples for ablations ii. and iii., our method and the ground truth street views.
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