Supplementary Material for
Post-hoc Uncertainty Calibration for Domain Drift Scenarios

1. Summary

We provide further details on the implementation of our algorithm as well as additional results. This appendix is structured
as follows.

* In section 2, we first formalize our algorithm in Algorithm 1. We then provide more details on the test perturbations used
for our analyses, along with their parameter sets.

* In section 3, we report supplementary results, including additional metrics as well as data on additional baselines and
additional experiments on the robustness of our findings.

* In section 4, we consolidate our results into a brief recommendation for practitioners.

2. Implementation details
2.1. Algorithm

Algorithm 1 Tuning of a post-calibration method for domain shift scenarios
Input: Classification model Y = f(X), validation set (X, Y"), number of perturbation levels N, number of classes C, initial
parameter &;pit.

1: Compute min and max accuracy: accmin = 1/C; acemax = acc(f(X),Y)

2: Compute N evenly spaced accuracy levels A = {accmin, ACCyin + *2omae—qCmin
3: Initialise empty perturbed validation set (X¢, Ye)

4: for 7 in 1:N do

5. if7 =1 then

6 Set &; = €init

7. end if

8:  Compute X., = X + N(0,¢;), by drawing a sample from a Gaussian N(0, ¢;) with variance ¢; for every pixel (j, k)

in every image =, € X

9:  Minimize acc(f(X,),Y) — A; with respect to ;, using a Nelder-Mead optimizer
10:  Compute X, = X + N(0,¢;) using optimized ¢;

11: Add (X.,,Y)to (Xe, Ye)
12 ifi < N then

yee s QCCmax b

13: Initialise €;,41 = €;
14:  endif
15: end for

16: Tune post-processing method on (X¢, Yg)

2.2. Perturbation strategies

For the affine test perturbation strategies (Table 1) we chose 10 levels of perturbation with increasing perturbation strength
until random levels of accuracy were reached (or parameters could not be increased any further). We started all test perturbation
sequences at no perturbation and list specific levels of perturbation in Table 1.

For Imagenet corruptions, we follow [ ] and report test accuracy as well as accuracy under maximum domain shift in Table 2.



Table 1: For rotation, perturbation is the (left or right) rotation angle in degrees, shift is measured in pixels in x or y direction,
for shear the perturbation is measured as shear angle in counter-clockwise direction in degrees, for zoom the perturbation is
zoom in x or y direction.

Perurbation Perturbation-specific parameter

rot left 0 350 340 330 320 310 300 290 280 270
rot right 0 10 20 30 40 50 60 70 80 90
shear 0 10 20 30 40 50 60 70 80 90
xyshift 0 2 4 6 8 10 12 14 16 18
xshift 0 2 4 6 8 10 12 14 16 18
xyshift 0 2 4 6 8 10 12 14 16 18
Xyzoom 1 090 080 070 0.60 050 040 030 020 0.10
Xzoom 1 09 080 070 0.60 050 040 030 020 0.10
yzoom 1 09 080 070 0.60 050 040 030 020 0.10

Table 2: Accuracies for Imagenet perturbations in-domain and with maximum shift.

Perurbation Accuracy
In-Domain  Max Domain-Shift

shot noise 0.7452 0.07752
impulse noise 0.7452 0.07104
defocus blur 0.7452 0.14784
glass blur 0.7452 0.06904
motion blur 0.7452 0.09696
zoom blur 0.7452 0.22864
snow 0.7452 0.17776
frost 0.7452 0.25016
fog 0.7452 0.40912
brightness 0.7452 0.56776
contrast 0.7452 0.06416
elastic transform  0.7452 0.14480
pixelate 0.7452 0.19216
jpeg compression  0.7452 0.41136
gaussian blur 0.7452 0.10016
saturate 0.7452 0.47952
spatter 0.7452 0.30808
speckle noise 0.7452 0.18296

3. Additional results
3.1. Additional baselines

In addition to the state-of-the-art post-calibrators analysed in detail in the main paper, we also assessed the effect of
tuning based on a perturbed validation set for additional baselines. Here, we report results for CIFAR-10 for Platt scaling [3],
histogram binning [4] and a recently proposed approach combining Platt scaling with histogram binning (PBMC) [2].

Table 3 reveals that also these baselines benefit from tuning on a perturbed validation set; note however that overall ECE was
consistently higher for these baselines compared to IR-P, for all architectures.

3.2. Additional metrics

In addition to the expected calibration error as reported in the main paper, we also compute a debiased ECE, recently
proposed in [2], that can be more robust than the standard definition of ECE. Also with this measure, our approach improves
all baselines consistently, with IRM-P, IR-P and TS-IR-P performing best (Table 4).



Table 3: Mean micro-average ECE across all affine test perturbations for the additional baselines.

Base PS HB PBMC PS-P HB-P PBMC-P

CIFAR VGG19 0.323 0.173 0.254 0.211 0.075 0.086 0.101
CIFAR ResNet50 0.202 0.211 0.220 0.210 0.181 0.101 0.099
CIFAR Den.Net121 0.206 0.177 0.205 0.191 0.109 0.096 0.105
CIFAR Mob.NetV2  0.159 0.180 0.191 0.187 0.182 0.099 0.098

Table 4: Debiased ECE for all baselines for CIFAR-10 and Imagenet.

Base TS-P ETS-P TS-IR-P IR-P IRM-P

CIFAR VGGI19 0.371 0.065 0.070 0.061 0.058  0.054
CIFAR ResNet50 0.221 0.099 0.110 0.101 0.101 0.089
CIFAR DenseNet121 0.230 0.162  0.148 0.118 0.100  0.141
CIFAR MobileNetv2  0.176  0.129  0.152 0.109 0.089 0.132

ImgNet ResNet50 0.144 0.058  0.047 0.042 0.042 0.050
ImgNet ResNet152 0.144 0.042 0.039 0.034 0.045  0.055
ImgNet VGG19 0.064 0.108  0.087 0.079 0.034  0.055
ImgNet Den.Net169  0.129 0.027  0.027 0.030 0.049  0.060
ImgNet Eff.NetB7 0.109 0.089  0.055 0.042 0.056  0.068
ImgNet Xception 0.235 0.072  0.038 0.035 0.119 0.122
ImgNet MobileNetv2 0.070 0.113  0.084 0.080 0.053 0.074

Furthermore, we also computed the negative log-likelihood as well as the Brier score for all post-calibrators. Again, our
approach results in consistent improvements over the state-of-the-art also in terms of these metrics (Tables 5 and 6 and Figures
1 and 2).

Table 5: NLL for all baselines for CIFAR-10 and Imagenet

Base TS ETS TS-IR IR IRM TS-P ETS-P TS-IR-P IR-P IRM-P

C-VGG19 249 149 147 1.86 1.88 1.55 1.37 1.37 1.47 1.47 1.38
C-ResNet50 1.78 1.69 1.68 242 242 186 148 1.48 220 1.90 1.47
C-Den.Netl21 1.86 1.62 1.60 277 282 181 142 1.40 2.00 1.96 1.40
C-Mob.Netv2 1.66 1.64 1.62 2.86 2.88 193 147 1.49 2.08 2.00 1.48
I-ResNet50 281 265 2.67 8.00 797 267 2.65 2.64 292 293 2.65
I-ResNet152 249 233 234 722 7.8 235 232 2.33 267 271 2.33
I-VGG19 294 292 292 8.64 863 294 297 2.94 321 3.5 2.94
I-Den.Netl69 248 235 235 733 131 237 234 2.34 274 2.80 2.35
I-Eff.NetB7 251 254 251 698 698 253 251 2.51 2.89 2.89 2.45
I-Xception 290 255 256 726 7.09 257 255 2.58 293 3.08 2.61

I-Mob.Netv2 345 358 351 103 102 3.67 3.52 3.48 3.66 3.62 3.51




Table 6: Brier score for all baselines for CIFAR-10 and Imagenet

Base TS ETS TS-IR IR IRM TS-P ETS-P TS-IR-P IR-P IRM-P
C-VGGI19 731 .603  .600 617 620 .610 .565 .566 574 574 .566
C-ResNet50 677 663  .660 .681 681 .664 .622 .624 664 .659 .620
C-Den.Net121  .631 .600 .598 .618 .618 .601 .593 587 623 .607 .584
C-Mob.NetV2  .644 .640 .636 .656 .656 .639 .619 .627 655 .642 .621
I-ResNet50 .667 .644 .648 692 692 .649  .646 .644 .645  .643 .644
[-ResNet152 620  .597 598 .645 643 600 597 .596 597 597 .598
I-VGG19 .688 .686 .687 732 732 687 699 .694 691  .681 .688
I-Den.Net169  .620 .602 .602 .650 .650 .604  .600 .600 595 .596 .603
[-Eff.NetB7 621 634 619 .635 .635 .608 .617 .612 584 586 .608
[-Xception 682 625 .621 .657 .661 .627 .624 .620 611 .627 .635
[-Mob.NetV2 745 767 758 .803 802 .754 759 51 740 734 750
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Figure 1: Brier score for Resnet50 trained on Imagenet
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Figure 2: NLL for Resnet50 trained on Imagenet

To further illustrate the benefit of our modelling approach for different post-calibration methods, we computed for each
algorithm the difference in mean ECE between our approach (using a perturbed validation set) and the standard approach
(using the unperturbed validation set). Table 7 highlights that our approach is beneficial for all post-calibration algorithms.



Table 7: AECE reveals that using a perturbed validation set for training improves performance across all methods for CIFAR-10
(higher is better).

ATS AETS ATS-IR AIR AIRM

CIFAR VGGI19 0.661 0.622 0.706  0.718 0.736
CIFAR ResNet50 0.528 0.473 0.518 0.509 0.575
CIFAR DenseNet121  0.103 0.158 0.376  0.472 0.208
CIFAR MobileNetv2  0.281 0.113 0.428 0.519 0.266

ImgNet ResNet50 -0.022  0.365 0.753 0.740 0.428
ImgNet ResNet152 0.147  0.301 0.778 0.708 0.276
ImgNet VGG19 -1.044  -0.567 0.467 0.762 0.085
ImgNet Den.Net169 0453 0421 0.795 0.662 0.118
ImgNet Eff.NetB7 0.451 0.440 0.705 0.622 0.218
ImgNet Xception 0.110 0.253 0.715 0.221 -0.313

ImgNet MobileNetv2  0.304  0.348 0.644 0.745 0.356

3.3. Additional experiments

Size of validation set While both IRM-P and IR-P performed consistently well across baselines, a key difference is that
IR-P is not accuracy preserving. In contrast, a model’s accuracy remains unchanged after post-calibration with IRM-P. In the
main paper, we show that the effect on the accuracy for IR-P is only marginal. To further investigate the robustness of IR-P in
terms of accuracy, we assessed the effect of the size of the validation set on performance. Our results show, that in fact for
small validation sets accuracy can substantially decrease for IR-P (Fig. 3 (b)). However, with increasing size of the validation
set accuracy increases and ECE decreases (Fig. 3 (a)). This suggests that for sufficiently large validation set, IR-based methods
benefit from their high expressiveness.
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Figure 3: Effect of the chosen size of the validation set on the mean expected calibration error and accuracy scores (CIFAR-10).



Base TS ETS TS-IR IR IRM TS-H ETS-H TS-IR-H IR-H IRM-H
0.323 0.158 0.152 0.173 0.176 0.167 0.102 0.096 0.112  0.127 0.114

Table 8: Mean expected calibration error across all test domain drift scenarios (affine transformations for CIFAR-10). Tuning
was performed on the validation set and the perturbed validation set generated by applying the validation perturbations
proposed in [1]. The latter is denoted by the suffix -H.

Type of validation perturbation Finally, we investigated the effect of the perturbation strategy used to generate a perturbed
validation set. To this end, we assessed whether perturbing the validation set using image perturbations rather than the generic
perturbations proposed in our work, could lead to similar results. To test this hypothesis, we used the validation perturbations
speckle noise, gaussian blur, spatter and saturate introduced in [1] to generate a perturbed validation set. We then tuned all
baselines on this validation set using a VGG19 model trained on CIFAR-10. Table 8 shows that this resulted in consistently
worse calibration errors compared to the generic perturbation strategy proposed in the main paper. This suggests, that our
algorithm can indeed yield a validation set that is representative of generic domain drift scenarios.

4. Guidelines

Based on our extensive experiments, we propose the following guidelines for practitioners:

 If a sufficiently large validation set is available and calibration for in-domain settings is of particular concern, we
recommend using IR-P or TS-IR-P. This may result in changes in model accuracy.

« If the practitioner requires that the accuracy of the trained model remains unchanged or truly OOD scenarios are of
particular concern, we recommend using IRM-P or ETS-P.
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