
Explore Image Deblurring via Encoded Blur Kernel Space
— Supplementary material —

Phong Tran1 Anh Tuan Tran1,2 Quynh Phung1 Minh Hoai1,3
1VinAI Research, Hanoi, Vietnam, 2VinUniversity, Hanoi, Vietnam,

3Stony Brook University, Stony Brook, NY 11790, USA
{v.phongtt15,v.anhtt152,v.quynhpt29,v.hoainm}@vinai.io

Abstract

In this supplement material, we further provide some ma-
terial including architecture details, hyper-parameter tun-
ing, and qualitative results to further analyze our method.

1. Training environment
We implement the proposed method using Pytorch 1.4.0.

The experiments are conducted using a single Nvidia RTX
2080 Ti GPU. We train F and G for 6 × 106 iterations on
either REDS [7] or GOPRO [6] datasets.

2. Architecture choices
Here we illustrate in detail the architecture of each com-

ponent in our proposed method. Details of the overall net-
work are given in Fig. 2

2.1. Preprocessing and Postprocessing blocks

We follow a common practice by using a pre-processing
block that downsamples the input image twice and convert
it to a feature map of size 64 × H/4 ×W/4 at the begin-
ning of both F and G. We denote it as PreprocessBlock
or PrB in short. At the end of F , we apply a post-
processing block that converts the output feature map of size
64×H/4×W/4 back to the image domain. This block is
called PostprocessBlock, and denoted as PoB. Their archi-
tectures are illustrated in Table 1 and Table 2 respectively.

Layer Output shape

Conv(3, 64, 3, 1, 1) 64×H ×W
Conv(64, 64, 3, 2, 1) 64×H/2×W/2
Conv(64, 64, 3, 2, 1) 64×H/4×W/4
ResBlock(64)× 10 64×H/4×W/4

Table 1. Structure of PreprocessBlock.

Layer Output shape

ResBlock(64)× 20 64 ×H/4×W/4
Conv(64, 256, 3, 1, 1) 64 ×H/4×W/4
PixelShuffle(2) 64 ×H/2×W/2
LeakyReLU(0.1) 64 ×H/2×W/2
Conv(64, 256, 3, 1, 1) 256×H/2×W/2
PixelShuffle(2) 64 ×H ×W
LeakyReLU(0.1) 64 ×H ×W
Conv(64, 64, 3, 1, 1) 64 ×H ×W
Conv(64, 3, 3, 1, 1) 3 ×H ×W

Table 2. Structure of PostprocessBlock.

Layer Output shape

PreprocessBlock 64 ×H/4 ×W/4
Conv(128, 64, 7, 1, 1) 64 ×H/4 ×W/4
LeakyReLU(0.1) 64 ×H/4 ×W/4
Conv(64, 128, 3, 2, 1) 128×H/8 ×W/8
LeakyReLU(0.1) 128×H/8 ×W/8
Conv(128, 256, 3, 2, 1) 256×H/16 ×W/16
LeakyReLU(0.1) 256×H/16 ×W/16
Conv(256, 512, 3, 2, 1) 512×H/32 ×W/32
LeakyReLU(0.1) 512×H/32 ×W/32
Conv(512, 512, 3, 2, 1) 512×H/64 ×W/64
LeakyReLU(0.1) 512×H/64 ×W/64
Conv(512, 512, 3, 2, 1) 512×H/128×W/128
LeakyReLU(0.1) 512×H/128×W/128
ResBlock(512)× 4 512×H/128×W/128

Table 3. Structure of G

2.2. Architecture of G

We use G to extract the blur kernel k from a given sharp-
blur pair of images x, y. We implement G using the men-
tioned PreprocessBlock and a follow-up residual neural net-
work [1]. Input of G is the concatenation of x and y. Its out-
put is a blur kernel of size 512×H/128×W/128. Details
of its architecture are given in Table 3.

Encoder

Layer Output shape

PreprocessBlock 64 ×H/4 ×W/4
Conv(64, 64, 3, 2, 1) 64 ×H/8 ×W/8
LeakyReLU(0.1) 64 ×H/8 ×W/8
Conv(64, 128, 3, 2, 1) 128×H/16 ×W/16
LeakyReLU(0.1) 128×H/16 ×W/16
Conv(128, 256, 3, 2, 1) 256×H/32 ×W/32
LeakyReLU(0.1) 256×H/32 ×W/32
Conv(256, 512, 3, 2, 1) 512×H/64 ×W/64
LeakyReLU(0.1) 512×H/64 ×W/64
Conv(512, 512, 3, 2, 1) 512×H/128×W/128
LeakyReLU(0.1) 512×H/128×W/128

Decoder

Layer Output shape

TransConv(1024, 512, 3, 2, 1) 512×H/64×W/64
LeakyReLU(0.1) 512×H/64×W/64
TransConv(1024, 256, 3, 2, 1) 256×H/32×W/32
LeakyReLU(0.1) 256×H/32×W/32
TransConv(512, 128, 3, 2, 1) 128×H/16×W/16
LeakyReLU(0.1) 128×H/16×W/16
TransConv(256, 64, 3, 2, 1) 64 ×H/8 ×W/8
LeakyReLU(0.1) 64 ×H/8 ×W/8
TransConv(128, 64, 3, 2, 1) 64 ×H/4 ×W/4
LeakyReLU(0.1) 64 ×H/4 ×W/4
PostprocessBlock 64 ×H ×W

Table 4. Structure of the encoder and decoder of F

2.3. Architecture of F

F takes two inputs, the sharp image x and the blur kernel
from G(x, y). As mentioned, F uses a PreprocessBlock at
the beginning and a PostprocessBlock at the end. Between
these blocks, we use an encoder-decoder with skip connec-
tion [9]. The encoder downsamples the pre-processed fea-
ture map five times and flattens to an embedding vector.
This vector is then concatenated with k and fed into a de-
coder that reconstructs the output feature map. Details of its
architecture are illustrated in Table 4.

2.4. Architectures of Deep Image Prior

We adopt the architecture of G for the network of DIP of
the blur kernel. The input zk is a normal-distributed random
tensor with the size equal to the size of the input of G.

For DIP for image, we adopt a U-net [9] as suggested
in [12]. The input zx is a normal-distributed random tensor
with size 1× 64× 64.

3. Hyper-parameters tuning
We trained the networks with an Adam optimizer [2]

with β1 and β2 are 0.9 and 0.99 respectively. The initial
learning rate was 10−4 with cosine annealing scheduler [5]
was applied. We set the weight of kernel regularization
||k||2 to 6× 10−4 for all image debluring experiments. The
weight of Hyper-Laplacian prior [3] was set to 2× 10−2.

4. Cross-dataset experiment
Here we provide quantitative comparisons on GOPRO

and HIDE dataset [10] in Table 5. We train the model using
GOPRO dataset and test on HIDE dataset and vice versa.
To make the testing sets, we randomly sample 500 images
from each GOPRO and HIDE testing set. Qualitative results
are given in Fig. 1.

DeblurGANv2 [15] SRN-Deblur [36] ours

GOPRO 24.35 25.21 26.17
HIDE 24.65 25.25 25.97

Table 5. PSNR scores of deblurring methods on the HIDE and
GOPRO datasets.

Figure 1. Deblurring results (left: SRN, right: ours) on HIDE
dataset

5. Inference time
We trained the kernel extractor using an Nvidia V100

with 5GB memory. It took 600K iterations to converge
(about 4 days). The average inference time for a 256×256
image using an Nvidia V100 is 209.53s.

6. More qualitative results
Here we provide more qualitative results of our methods

including: Blur transferring (Fig. 3 and Fig. 4) and image
deblurring on face domain (Fig. 5, Fig. 6, Fig. 7, Fig. 8,
Fig. 9, Fig. 10, Fig. 11, and Fig. 12).

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

Convolution

Residual block

＋ ＋

LeakyReLU

Pixel shuffle

＋ ＋ ＋

＋ ＋

C

C

C

＋
Pointwise
addition

C Concatenation

PreprocessBlock (PrB)

PostprocessBlock (PoB)

Network 𝓖

Network 𝓕

C

C

𝑥, 𝑦

feature
map

RGB
image

feature
map

RGB
image

𝑘

𝑘𝑥 𝑦

PrB

PrB PoB

C

Encoder Decoder

Figure 2. Detailed architecture of the proposed method

ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[3] Dilip Krishnan and Rob Fergus. Fast image deconvolution
using hyper-laplacian priors. In Advances in Neural Infor-
mation Processing Systems, 2009.

[4] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang
Wang. Deblurgan-v2: Deblurring (orders-of-magnitude)
faster and better. In Proceedings of the International Con-

ference on Computer Vision, 2019.
[5] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-

tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[6] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep
multi-scale convolutional neural network for dynamic scene
deblurring. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017.

[7] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik
Moon, Sanghyun Son, Radu Timofte, and Kyoung Mu Lee.
Ntire 2019 challenge on video deblurring and super-

x̂ x y ŷ

Figure 3. Transferring blur kernel from the source pair x, y to the target sharp x̂ to generate the target blurry
image ŷ

resolution: Dataset and study. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2019.

[8] Dongwei Ren, Kai Zhang, Qilong Wang, Qinghua Hu, and
Wangmeng Zuo. Neural blind deconvolution using deep pri-
ors. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2020.
[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, 2015.

[10] Ziyi Shen, Wenguan Wang, Jianbing Shen, Haibin Ling,

x̂ x y ŷ

Figure 4. transferring blur kernel from the source pair x, y to the target sharp x̂ to generate the target blurry
image ŷ

Tingfa Xu, and Ling Shao. Human-aware motion deblur-
ring. In IEEE International Conference on Computer Vision,
2019.

[11] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-
aya Jia. Scale-recurrent network for deep image deblurring.
In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018.
[12] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

Blur SelfDeblur [8] [4] REDS

[4] imgaug [11] REDS [11] imgaug

Ours

Figure 5. Results of deblurring methods trained on REDS and tested on GOPRO

Blur SelfDeblur [8] [4] REDS

[4] imgaug [11] REDS [11] imgaug

Ours

Figure 6. Results of deblurring methods trained on REDS and tested on GOPRO

Blur SelfDeblur [8] [4] REDS

[4] imgaug [11] REDS [11] imgaug

Ours

Figure 7. Results of deblurring methods trained on REDS and tested on GOPRO

Blur SelfDeblur [8] [4] REDS

[4] imgaug [11] REDS [11] imgaug

Ours

Figure 8. Results of deblurring methods trained on REDS and tested on an in-the-wild example

Blur SelfDeblur [8] [4] REDS

[4] imgaug [11] REDS [11] imgaug

Ours

Figure 9. Results of deblurring methods trained on REDS and tested on an in-the-wild example

Blur Ours

Figure 10. Results of our method trained on REDS and tested on GOPRO

Blur Ours

Figure 11. Results of our method trained on REDS and tested on GOPRO

Blur Ours

Figure 12. Results of our method trained on REDS and tested on GOPRO

