
Supplementary Material
A. Overview

We present implementation setups and additional exper-
iments in this supplementary material. We clarify the ar-
chitecture of the auto-shot segmenter in Section B. In Sec-
tion C, we describe experiment details of car and horse part
segmentation mentioned in the main paper. Section D com-
pares using logit values vs one-hot vectors as the ground-
truth target labels for the dataset generated by few-shot seg-
menters. Section E describes architectures used in GAN-
derived representation analysis (Section 5.2). Section F
investigates the segmentation performance using different
choices of GAN’s layers. Section G tests our method’s abil-
ity to segment arbitrary parts. Section H explores represen-
tation learned from other unsupervised and self-supervised
learning methods and compare their few-shot segmentation
performance.

B. Auto-shot segmentor architecture

We adopt UNet architecture [10] for our auto-shot seg-
mentation network. The overall architecture is shown in Ta-
ble A. The network consists of encoder and decoder. For the
encoder, there are 5 blocks of a convolutional layer, batch
normalization, and a ReLU activation. Max-pooling is used
after every 2 blocks to halve the input size. The decoder
consists of 4 blocks of bilinear upsampling, 2 convolutional
layers, batch normalization, and a ReLU activation. Lastly,
a 1x1 convolutional layer is used to map the feature to the
segmentation output.

C. Experiment Setups

For our experiments in the paper, we try to match the
setups of those baseline methods as much as possible for a
fair comparison. Most prior part segmentation methods [11,
14, 7] use bounding boxes to crop the image as they want
to focus on only part segmentation not object localization.
Some work [7, 14] eliminate objects deemed too small or
objects with occlusion. In this section, we clarify the pre-
processing step we use for each dataset.

Car part segmentation We follow the setup from [11]
and evaluate on PASCAL-Part. We use the provided bound-
ing boxes with class annotations in PASCAL-Part to select
and crop images of cars, then use them as our test images.
To compare with [14], we discard images whose bounding
boxes overlap with other bounding boxes with IOU more
than 5 and images that are smaller than 50x50 pixels. We
fill the background with black color. Even though our net-
work still predicts the background class, we calculate the
average score without the background class.

Horse part segmentation We follow the horse part seg-
mentation’s setup from [7] and use the provided bound-
ing boxes with class annotations in PASCAL-Part to extract

Table A: Architecture of auto-shot segmentation network.

Layer Kernel size Stride Batch normalization Activation Output size
Input - - No - H x W x 3

Conv1a 3 x 3 1 Yes ReLU H x W x 64
Conv1b 3 x 3 1 Yes ReLU H x W x 64

Max Pool 2 x 2 2 No - H/2 x W/2 x 64
Conv2a 3 x 3 1 Yes ReLU H/2 x W/2 x 128
Conv2b 3 x 3 1 Yes ReLU H/2 x W/2 x 128

Max Pool 2 x 2 2 No - H/4 x W/4 x 128
Conv3a 3 x 3 1 Yes ReLU H/4 x W/4 x 256
Conv3b 3 x 3 1 Yes ReLU H/4 x W/4 x 256

Max Pool 2 x 2 2 No - H/8 x W/8 x 256
Conv4a 3 x 3 1 Yes ReLU H/8 x W/8 x 512
Conv4b 3 x 3 1 Yes ReLU H/8 x W/8 x 512

Max Pool 2 x 2 2 No - H/16 x W/16 x 512
Conv5a 3 x 3 1 Yes ReLU H/16 x W/16 x 512
Conv5b 3 x 3 1 Yes ReLU H/16 x W/16 x 512

Upsample
Concat(Conv4b) - - No - H/8 x W/8 x 1024

Conv6a 3 x 3 1 Yes ReLU H/8 x W/8 x 512
Conv6b 3 x 3 1 Yes ReLU H/8 x W/8 x 512

Upsample
Concat(Conv3b) - - No - H/4 x W/4 x 512

Conv7a 3 x 3 1 Yes ReLU H/4 x W/4 x 256
Conv7b 3 x 3 1 Yes ReLU H/4 x W/4 x 256

Upsample
Concat(Conv2b) - - No - H/2 x W/2 x 256

Conv8a 3 x 3 1 Yes ReLU H/2 x W/2 x 128
Conv8b 3 x 3 1 Yes ReLU H/2 x W/2 x 128

Upsample
Concat(Conv1b) - - No - H x W x 128

Conv9a 3 x 3 1 Yes ReLU H x W x 64
Conv9b 3 x 3 1 Yes ReLU H x W x 64
Conv10 1 x 1 1 No - H x W x Classes

Table B: Comparison between IOU scores of auto-shot seg-
menter using one-hot masks vs logit values as annotations.

Model Face Horse Car
One-hot 82.1 69.9 70.6
Logits 84.5 72.3 72.6

horse images. We discard horse images smaller than 32x32
pixels.

D. Logit vs One-hot Labels for Auto-shot Segmen-
tation

As explained in the main paper, we use our few-shot
segmenter along with a trained GAN to generate a labeled
dataset for our auto-shot segmenter. Each training example
in this dataset consists of a generated image and its cor-
responding segmentation map predicted from our few-shot
segmenter. For this dataset, each pixel in each segmentation
map is represented as a set of logit values corresponding to
the probabilities of different part classes, as opposed to a
standard one-hot encoding of the part class. The motivation
is to keep the class confidence scores that could provide use-
ful information for the auto-shot segmenter and help prevent
over-confident predictions based on spurious or ambiguous
target labels.

In this experiment, we compare our auto-shot segmenter
trained with our proposed logit values to the standard one-
hot target labels. Table B shows that using logit labels out-
performs one-hot labels on all three object categories.



Table C: Architecture of S-network.

Layer Kernel size Dilation rate Padding Output channel size
Conv1 3 x 3 1 1 128
Conv2 3 x 3 2 2 64
Conv3 3 x 3 1 1 64
Conv4 3 x 3 2 2 32
Conv5 3 x 3 1 1 number of classes

E. Various architectures used in GAN-derived Rep-
resentation Analysis

In this section, we describe architectures used in GAN-
derived representation analysis (Section 5.2). The small,
medium, and large architectures are shown in Table C, Table
D, and Table E respectively.

F. Effects of GAN’s Layer Selection

A study on style mixing from StyleGAN [3] suggests
that information in earlier layers of the GAN’s generator
controls the higher-level appearance of the output image,
whereas late layers control the subtle details. In this experi-
ment, we explore whether choosing different subsets of lay-
ers from the generator can affect the performance. Similarly
to the study in StyleGAN, we roughly split the layers into
3 groups: (A) the coarse style (from resolution 42 − 82),
(B) the middle style (162 − 322), and (C) the fine style
(642 − 10242). Then, we test our one-shot segmenter by
feeding different combinations of these groups shown in Ta-
ble F. The result shows that the representation from group B
yields the highest IOU with a slight increase from using all
layers, and group A performs the worst. This suggests that
the middle layers that control the variation and appearance
of facial features are more useful for few-shot face segmen-
tation and that layer selection could play an important role.

G. Arbitrary Segmentation

We have shown that features from GANs are effective
for part segmentation when those parts, so far, correspond
to some natural semantic regions such as eyes and mouth.
In this experiment, we test whether features from GANs are
restricted to those parts and whether our method can gener-
alize to any arbitrary segmented shapes. We manually cre-
ate random shaped annotations and use them to train our
few-shot network. Figure A shows that our method can still
handle semantic-less parts and produce consistent segmen-
tation across people and head poses.

H. Comparison on Representation Learned from
Other Tasks

In our paper, we demonstrate the effectiveness of repre-
sentation from GANs on few-shot semantic part segmenta-
tion. However, apart from GANs and generative tasks, there

Table D: Architecture of M-network.

Layer Kernel size Dilation rate Padding Output channel size
Conv1 3 x 3 1 1 128
Conv2 3 x 3 2 2 64
Conv3 3 x 3 4 4 64
Conv4 3 x 3 1 1 64
Conv5 3 x 3 2 2 64
Conv6 3 x 3 4 4 32
Conv7 3 x 3 1 1 number of classes

Table E: Architecture of L-network.

Layer Kernel size Dilation rate Padding Output channel size
Conv1 3 x 3 1 1 128
Conv2 3 x 3 2 2 64
Conv3 3 x 3 4 4 64
Conv4 3 x 3 8 8 64
Conv5 3 x 3 1 1 64
Conv6 3 x 3 2 2 64
Conv7 3 x 3 4 4 64
Conv8 3 x 3 8 8 32
Conv9 3 x 3 1 1 number of classes

Table F: Comparison of 1-shot segmentation performance
with representation from different layers of GANs.

Layers Resolution weighted mean IOU
A 42 − 82 59.6
B 162 − 322 79.1
C 642 − 5122 69.0

A-B 42 − 322 75.2
B-C 162 − 5122 75.0

A-B-C (all) 42 − 5122 77.9

Annotation One-shot Results

Figure A: Given segmentation masks with arbitrary, mean-
ingless shapes that have no clear boundary, our approach
can infer the same regions across different face images and
can even recognize it when the regions are stretched or out
of view.

are other tasks and networks that can be used for represen-
tation learning. In this section, we compare how other rep-
resentation tasks perform on few-shot human face segmen-



Table G: Weighted IOU scores on 10-shot face segmentation with representation learned from different tasks / networks.

Task / Network 4 class 10 class
1-shot 5-shot 10-shot 1-shot 5-shot 10-shot

GANs 71.7 82.1 83.5 77.9 83.9 85.2
VAE 55.1 69.7 72.8 51.6 58.4 65.5

Jigsaw Solving 23.3 46.3 60.0 41.6 54.9 60.4
Colorization 32.1 39.7 51.7 49.1 55.5 66.1

HED 38.2 48.5 60.9 48.9 67.2 70.3
Bilat Filtering 10.9 22.4 49.9 29.2 45.3 54.5

GANs VAE Jigsaw HED Color BilatInput

Figure B: Comparison on 10-shot human face segmentation with representation learned from different tasks / networks.

tation. We focus on unsupervised or self-supervised tasks
in this study because they require no manual labels and can
be applied to any new unseen class.

We select networks learned to solve 5 different tasks for
this experiment: a) VAE [4], a well-known approach used
to synthesize images or find a compact representation of an
image through auto encoding with regularized latent distri-
bution, b) jigsaw solving network [9], a successful repre-
sentation learning approach for ImageNet classification that
achieves comparable results to a fully-supervised baseline,
c) holistically-nested edge detection (HED) network whose
nature of the task is closely related to image segmentation,
e) colorization network whose representation displays good
results in a segmentation task in [5], and f) bilateral filter-
ing network which solves a simple task but has to be edge-
aware.

Upstream Networks and Feature Extraction

We train the following baseline networks with human
facial images from CelebA dataset [6] which comprises
160,000 training images.

Variational Autoencoder (VAE) We use ResNet archi-
tecture [1] for both encoder and decoder and train the net-
work with a perceptual loss from all layers of VGG19 [13].
The generated images are realistic but blurrier compared to
those generated from state-of-the-art GANs.

We extract a pixel-wise representation from VAE by
feeding an input image into the encoder through the de-
coder and extracting all activation maps from all convolu-
tional layers in the decoder of VAEs. Then, similarly to
GANs feature extraction, all activation maps are upsampled
into the dimension of the biggest activation maps and con-
catenated together in the channel dimension.

Jigsaw Solving Network Setup We follow the setup and
network architecture from [9] to implement a jigsaw solving



network. This task asks the network to predict one of the
1,000 predefined permutations of shuffled image patches.
To explain the process, first we randomly crop a big square
patch from an image and divide the patch into a 3x3 grid.
All 9 partitioned squares are then cropped again into slightly
smaller squares. The 9 squares are then shuffled into one of
1,000 predefined permutations, and the network is trained
to predict the 1,000 predefined permutation from the nine
squares as input.

We extract features from all convolutional layers of the
jigsaw solving network using the same method as in our
VAE representation extraction.

Images Translation with Pix2Pix we use Pix2Pix [2]
framework to create networks that take an image as in-
put and predict some transformed version of that image.
We use three types of image transformations: colorization,
holistically-nested edge detection (HED) [12], and bilateral
filtering. For colorization, we transform the images to Lab
space, then use L channel as input and train the network to
predict values in a channel and b channel. For HED, we use
HED implementation and pretrained weights from [8].

Pix2Pix is a conditional GAN, and a latent optimizer is
not needed for embedding the input image because it can
take images as input directly to its UNet-based architecture.
We feed an input image into Pix2Pix’s encoder but only use
activation maps from all convolutional layers of the genera-
tor (or decoder) to construct a pixel-wise representation.

Results

The segmentation results are shown in Figure B and Ta-
ble G. Representation acquired from GANs produces the
best results among all networks. For VAE, the segmenta-
tion results are good for 3-class segmentation, second only
to GANs. However, the results are noticeably worse in 10-
class segmentation because of the bad results in hair class.
The segmentation results with representation from the jig-
saw solving task can locate facial features, but the quality
of contour is poor. HED representation has comparatively
good segmentation results which could be because segmen-
tation and edge detection problems are closely related, both
requiring locating part boundaries. However, since HED
often fails to find the nose boundary, nose segmentation is
worse than other three previous tasks. Colorization is an-
other task that cannot find the nose boundary as the nose and
all facial skin share the same color, and there is no need for
the colorization network to learn to discriminate noses from
faces. The bilateral filtering task has the worst segmentation
results as the network may only learn to find objects’ edges
and a kernel that can blur images.
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