
Supplementary material:

Reconsidering Representation Alignment for Multi-view Clustering

Daniel J. Trosten Sigurd Løkse Robert Jenssen Michael Kampffmeyer
Department of Physics and Technology, UiT The Arctic University of Norway*

1. Pitfalls of distribution alignment in multi-
view clustering

1.1. Proof sketch for Proposition 1

Proof sketch. Suppose that, for view v, the kv clusters in
the input space, are mapped to cv unique points in the rep-
resentation space. This is possible under assumptions 1 and
2. The number of unique clusters after fusion is then upper
bounded by the number of unique linear combinations on
the form:

V∑
v=1

wvc
(v)
? (1)

where c(v)? is one of the cv points obtained by mapping the
kv unique points (clusters) for view v, to the representation
space. Note that the encoders might not be injective, mean-
ing that we can have cv < kv. Under assumption 3, the
maximum number of unique such linear combinations is
equal to c1 · c2 · · · cV =

∏V
v=1 cv. Since we only have k

clusters in the entire dataset, the number of unique clusters
after fusion will also be upper bounded by k. This gives:

κfused
· = min

{
k,

V∏
v=1

cv

}
. (2)

Perfectly aligned representations. Clusters that are sepa-
rated in the input space can be mapped to the same centroid
in the representation space, but not vice versa. I.e. it is not
possible for the encoding network to separate two clusters
that lie at the same point in the input space. The perfect
alignment constraint therefore forces the number of unique
points to be equal to the smallest kv for each cluster. That is:

cv = min
w=1,...,V

{kw}, v = 1, . . . , V. (3)

*UiT Machine Learning Group, machine-learning.uit.no

We then get

κfused
aligned = min

{
k,

V∏
v=1

min
w=1,...,V

{kw}

}
(4)

= min

{
k,

(
min

v=1,...,V
{kv}

)V
}

(5)

Unaligned representations. Here the encoder for view v
has the ability to map the kv separable clusters to kv unique
representations, which do not coincide with the represen-
tations from any other views. We therefore get cv = kv,
and

κfused
not aligned = min

{
k,

V∏
v=1

cv

}
(6)

= min

{
k,

V∏
v=1

kv

}
. (7)

1.2. Experiments with toy data

Figure 1 shows the results of our toy experiment with
3 clusters instead of 5. The dataset is shown in Figure
2. Similarly to the experiment with 5 clusters, we ob-
serve that SiMVC + Adv. partially aligns the distributions.
Due to the reduced number of clusters however, it is still
possible to separate the clusters after fusion. This out-
come is consistent with Proposition 1, from which we get
κfused

aligned = min{3, 22} = 3.
For CoMVC, we see that the angles between represen-

tations have been aligned, which also results in separable
clusters.

EAMC attempts to align the distributions, which results
in all clusters being mixed together after fusion – similar to
what we observed for the experiment with 5 clusters. For this
experiment, we also observe that EAMC produces approxi-
mately equal fusion weights. This violates assumption 3 in
Proposition 1, and can further reduce the cluster separability
in the space of fused representations.

machine-learning.uit.no


(a) SiMVC +Adv. ACC = 0.99 (b) SiMVC. ACC = 1.0. (c) CoMVC. ACC = 1.0. (d) EAMC. ACC = 0.44 .

Figure 1: Representations for SiMVC with and without adversarial alignment, CoMVC, and EAMC on a version of our toy
dataset with 3 clusters.

Figure 2: Toy dataset with 3 clusters. View 1: Class 1
is isolated, and classes (2,3) overlap. View 2: Class (1,2)
overlap, and class 3 is isolated.

2. Methods

2.1. CoMVC with projection head

Table 1 shows the results of an extension of the ablation
study for CoMVC, where we also include a projection head
between the view representations and the cosine similar-
ity. Following [1], we let the projection head be two fully
connected layers, separated by a ReLU-nonlinearity. Batch
normalization is applied after both layers. The results show
that some configurations benefit marginally from the addi-
tion of a projection head. However, adding the projection
head does not improve the overall performance of CoMVC.
We therefore chose to not include it in the final model.

Dataset
Projection

head
Negative
sampling

Adaptive
weight

ACC
[%]

NMI
[%]

E
-M

N
IS

T

– – – 87.4 86.8
– 3 – 87.5 86.6
– – 3 94.7 89.5
– 3 3 95.5 90.7

3 – – 87.5 86.9
3 3 – 88.2 86.3
3 – 3 87.4 87.2
3 3 3 77.1 77.5

V
O

C

– – – 54.7 61.3
– 3 – 58.5 67.4
– – 3 55.3 60.7
– 3 3 61.9 67.5

3 – – 53.4 58.2
3 3 – 57.0 63.2
3 – 3 62.4 65.3
3 3 3 55.2 59.6

Table 1: CoMVC ablation study with and without a projec-
tion head.

2.2. Ablation study: clustering loss

Here, we perform an ablation study on the E-MNIST
dataset, in order to show the effects of the individual terms
in the DDC [2] clustering loss. Note that, since not all config-



Model L1 L2 L3 ACC [%] NMI [%]

SiMVC

3 – – 19.2 19.6
– 3 – 38.1 31.4
– – 3 75.2 73.9
3 3 – 78.2 78.6
3 – 3 76.6 77.5
– 3 3 77.4 76.9
3 3 3 86.2 82.6

CoMVC

3 – – 19.3 20.6
– 3 – 36.5 25.2
– – 3 72.8 71.7
3 3 – 71.3 73.2
3 – 3 78.0 78.2
– 3 3 74.8 73.5
3 3 3 95.5 90.7

Table 2: Results of an ablation study where we systematically
drop terms from the clustering loss. The checkmarks indicate
which terms that are included in each configuration.

urations include the L1 term, we select models based on the
sum of the included terms instead. The resulting accuracies
for SiMVC and CoMVC when we systematically drop terms
from the clustering loss, are listed in Table 2. These results
are in line with previous ablation studies conducted on the
DDC clustering loss [2, 5]: The models perform best when
all terms are included – dropping terms from the clustering
loss reduces the performance of both SiMVC and CoMVC.

3. Experiments
3.1. Source code

The source code for our experiments is publicly available
at https://github.com/DanielTrosten/mvc.

3.2. Details of pre-trained models

For RGB-D, we use the following pre-trained models to
extract features for the respective views:

• View 1: ResNet-50 pre-trained on the ImageNet dataset.
We use the version available in PyTorch1, and remove
the last (classification) layer.

• View 2: Doc2Vec pre-trained on the Wikipedia dataset.
We use the pre-trained model available at https://
github.com/jhlau/doc2vec.

Note that the same types of architectures are used in [5] to
extract features for RGB-D. However, the authors do not
supply the model and training details required to exactly
reproduce their features.

1Documentation for the model can be found at https://pytorch.
org/docs/stable/torchvision/models.html

Layer type Neurons Activation Batch-norm

FC 512 ReLU 5
FC 512 ReLU 5
FC 256 ReLU 5

(a) Fully connected encoder. FC: fully connected layer.

Layer
type

Filter
size Filters Activation

Batch-
norm

Conv 5× 5 32 ReLU 5
Conv 5× 5 32 ReLU 3

MaxPool 2× 2 – – 5
Conv 3× 3 32 ReLU 5
Conv 3× 3 32 ReLU 3

MaxPool 2× 2 – – 5

(b) Convolutional neural network encoder. Conv: convolutional
layer. MaxPool: max-pooling layer. Note that Batch normaliza-
tion is applied before the activation function.

Layer type Neurons Activation Batch-norm

FC 100 ReLU 3
FC k softmax 5

(c) Clustering module. k denotes the number of clusters.

Table 3: Network architectures.

3.3. Model architectures and hyperparameters

SiMVC and CoMVC trained on VOC, CCV, and RGB-D
use fully connected encoders (Table 3a) for all views. On
E-MNIST, E-FMNIST and COIL our models use convolu-
tional neural network encoders for all views (Table 3b). The
clustering module (Table 3c) is the same for all experiments
with SiMVC and CoMVC.

Table 4 lists the other hyperparameters that are not part
of the model architectures. We use gradient clipping, and
clip gradients with norms greater than ”Max gradient norm”.
For some datasets, we found that decaying the learning rate
helped the models converge. On these datasets, we reduce
the learning rate once, at epoch ”Decay step”, with a factor
of ”Decay factor”.

3.4. Evaluation protocol

For VOC, CCV, and E-MNIST, we use the baseline results
obtained by [5]. For all baseline models, except EAMC, they
run the model 10 times and report the average ACC and
NMI. For EAMC, they train the model 20 times, and report
the results from the run which resulted in the lowest value of
the loss function. We follow the same evaluation procedure
for EAMC, when we evaluate it on E-FMNIST, COIL-20,

https://github.com/DanielTrosten/mvc
https://github.com/jhlau/doc2vec
https://github.com/jhlau/doc2vec
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html


Dataset Model
Batch
size Epochs τ δ

Negative
samples

Max
gradient

norm

Initial
learning

rate

Decay
step

Decay
factor

VOC SiMVC 100 100 0.1 0.1 – 5 0.001 50 0.1
CoMVC 100 100 0.1 0.1 25 5 0.001 – –

CCV SiMVC 100 100 0.1 20 – 5 0.001 – –
CoMVC 100 100 0.1 20 25 5 0.001 50 0.1

E-MNIST SiMVC 100 100 0.1 0.1 – 5 0.001 – –
CoMVC 100 100 0.1 0.1 25 5 0.001 – –

E-FMNIST SiMVC 100 100 0.1 0.1 – 5 0.001 – –
CoMVC 100 100 0.1 0.1 25 5 0.001 – –

COIL-20 SiMVC 100 100 0.1 20 – 5 0.001 – –
CoMVC 100 100 0.1 20 25 5 0.001 – –

RGB-D SiMVC 100 100 0.1 0.1 – 5 0.001 – –
CoMVC 100 100 0.1 0.1 25 5 0.001 50 0.5

Table 4: Hyperparameters used to train SiMVC and CoMVC.

SwMPC [4] RSwMPC [3] SiMVC CoMVC

ACC 0.1679 0.2778 0.2717 0.2892
NMI 0.0899 0.1810 0.1767 0.2052

Table 5: Comparison with [4, 3] on NUS-WIDE-Animal [3].

EAMC SiMVC CoMVC

sec/epoch 33.48 12.18 14.28

Table 6: Time spent per training epoch for EAMC, SiMVC
and CoMVC on E-FMNIST.

and RGB-D.

3.5. Experiments on NUS-WIDE-Animal

Table 5 shows the performance of our models on NUS-
WIDE-Animal [3] (a subset of NUS-WIDE containing the
animal classes only) compared to two additional models
[4, 3] (as reported in [3]). SiMVC performs comparable,
while CoMVC outperforms the competitors.

3.6. Training times

Table 6 shows the average time spent per training
epoch for EAMC, SiMVC, and CoMVC. Both SiMVC and
CoMVC are more than twice as fast to train per epoch, when
compared to EAMC. We believe that this is due to the extra
components (attention network, discriminator) included in
EAMC. SiMVC is a bit faster to train than CoMVC, due to
the extra computations introduced by the contrastive loss.

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-

frey Hinton. A Simple Framework for Contrastive Learning
of Visual Representations. In International Conference on
Machine Learning, 2020.

[2] Michael Kampffmeyer, Sigurd Løkse, Filippo M. Bianchi,
Lorenzo Livi, Arnt-Børre Salberg, and Robert Jenssen. Deep
divergence-based approach to clustering. Neural Networks,
113, 2019.

[3] Beilei Wang, Yun Xiao, Zhihui Li, Xuanhong Wang, Xiaojiang
Chen, and Dingyi Fang. Robust Self-Weighted Multi-View
Projection Clustering. In AAAI Conference on Artificial Intelli-
gence, 2020.

[4] R. Wang, F. Nie, Z. Wang, H. Hu, and X. Li. Parameter-Free
Weighted Multi-View Projected Clustering with Structured
Graph Learning. IEEE Transactions on Knowledge and Data
Engineering, 32(10), 2020.

[5] Runwu Zhou and Yi-Dong Shen. End-to-End Adversarial-
Attention Network for Multi-Modal Clustering. In Computer
Vision and Pattern Recognition, 2020.


