
Learning Accurate Dense Correspondences and When to Trust Them
Appendix

Prune Truong Martin Danelljan Luc Van Gool Radu Timofte
Computer Vision Lab, ETH Zurich, Switzerland

{prune.truong, martin.danelljan, vangool, radu.timofte}@vision.ee.ethz.ch

In this appendix, we first give a detailed derivation of
our probabilistic model as a constrained mixture of Laplace
distributions in Sec. A. In Sec. B, we then derive our prob-
abilistic training loss and explain our training procedure in
more depth. We subsequently follow by providing addi-
tional information about the architecture of our proposed
networks as well as implementation details in Sec. C. In
Sec. D, we extensively explain the evaluation datasets and
set-up. Then, we present more detailed quantitative and
qualitative results in Sec. E. Finally, we perform detailed
ablative experiments in Sec. F.

A. Detailed derivation of probabilistic model
Here we provide the details of the derivation of our un-

certainty estimate.

Probabilistic formulation: We model the flow estimation
as a probabilistic regression with a constrained mixture den-
sity of Laplacian distributions (Sec. 3.2 of the main paper).
Our mixture model, corresponding to equation (2) of the
main paper, is expressed as,

p (y|ϕ) =

M∑
m=1

αmL(y|µ, σ2
m) (1)

where, for each component m, the bi-variate Laplace distri-
bution L(y|µ, σ2

m) is computed as the product of two inde-
pendent uni-variate Laplace distributions, such as,

L(y|µ, σ2
m) = L(u, v|µu, µv, σ2

u, σ
2
v) (2a)

= L(u|µu, σ2
u).L(v|µv, σ2

v) (2b)

=
1√
2σ2

u

e
−
√

2
σ2u
|u−µu|

.

1√
2σ2

v

e
−
√

2
σ2v
|v−µv| (2c)

where µ = [µu, µv]
T ∈ R2 and σ2

m = [σ2
u, σ

2
v]T ∈ R2

are respectively the mean and the variance parameters of
the distribution L(y|µ, σ2

m). In this work, we additionally

define equal variances in both flow directions, such that
σ2
m = σ2

u = σ2
v ∈ R. As a result, equation (2) simplifies,

and when inserting into (1), we obtain,

p (y|ϕ) =
M∑
m=1

αm
1

2σ2
m

e
−
√

2
σ2m
|y−µ|1

. (3)

Confidence estimation: Our network Φ thus outputs,
for each pixel location, the parameters of the predic-
tive distribution, i.e. the mean flow µ along with the
variance σ2

m and weight αm of each component, as(
µ, (αm)Mm=1, (σ

2
m)Mm=1

)
= ϕ(X; θ). However, we aim at

obtaining a single confidence value to represent the relibia-
bility of the estimated flow vector µ. As a final confidence
measure, we thus compute the probability PR of the true
flow being within a radius R of the estimated mean flow
vector µ. This is expressed as,

PR = P (‖y − µ‖∞ < R) (4a)

=

∫
{y∈R2:‖y−µ‖∞<R}

p(y|ϕ)dy (4b)

=
∑
m

αm

∫ µu+R

µu−R

1√
2σm

e−
√
2
|u−µu|
σm du

∫ µv+R

µv−R

1√
2σm

e−
√
2
|v−µv|
σm dv (4c)

=
∑
m

αm

[
1− exp(−

√
2
R

σm
)

]2
(4d)

where we have here expressed PR with the standard de-
viation parameters σm instead of the variance parame-
ters σ2

m for ease of notation. This confidence measure is
used to identify the accurate matches by thesholding PR.
In Fig 1, we visualize the estimated mixture parameters
(αm)Mm=1, (σ

2
m)Mm=1, and the resulting confidence map PR

for multiple image pair examples.

B. Training details
In this section, we derive the numerically stable Neg-

ative Log-Likelihood loss, used for training our network

(A) MegaDepth

(B) KITTI-2015

Figure 1. Visualization of the mixture parameters (αm)Mm=1 and
σ2
2 predicted by our final network PDC-Net, on multiple image

pairs. PDC-Net has M = 2 Laplace components and here, we do
not represent the scale parameter σ2

1 , since it is fixed as σ2
1 = 1.0.

We also show the resulting confidence maps PR for multiple R.

PDC-Net. We also describe in details the employed training
datasets.

B.1. Training loss

Similar to conventional approaches, probabilistic meth-
ods are generally trained using a set of iid. image pairs
D =

{
X(n), Y (n)

}N
n=1

. The negative log-likelihood pro-
vides a general framework for fitting a distribution to the
training dataset as,

L(θ;D) = − 1

N

N∑
n=1

log p
(
Y (n)|Φ(X(n); θ)

)
(5a)

= − 1

N

N∑
n=1

∑
ij

log p
(
y
(n)
ij |ϕij(X

(n); θ)
)

(5b)

Inserting (3) into (5), we obtain for the last term the follow-
ing expression,

Lij = − log p
(
y
(n)
ij |ϕij(X

(n); θ)
)

(6a)

= − log

(
M∑
m=1

αm
1

2σ2
m

e
−
√

2
σ2m
|y−µ|1

)
(6b)

= − log

(
M∑
m=1

eα̃m∑M
m=1 e

α̃m

1

2σ2
m

e
−
√

2
σ2m
|y−µ|1

)
(6c)

= log

(
M∑
m=1

eα̃m

)

− log

(
M∑
m=1

eα̃m
1

2σ2
m

e
−
√

2
σ2m
|y−µ|1

)
(6d)

= log

(
M∑
m=1

eα̃m

)

− log

(
M∑
m=1

eα̃m−log(2)−sm−
√
2e−

1
2
sm .|y−µ|1

)
(6e)

where sm = log(σ2
m). Indeed, in practise, to avoid divi-

sion by zero, we use sm = log(σ2
m) for all components

m ∈ {0, ..,M} of the mixture density model. For the im-
plementation of the loss, we use a numerically stable log-
sumexp function.

With a simple regression loss such as the L1 loss, the
large errors represented by the heavy tail of the distribution
in Fig. 3 of the main paper have a disproportionately large
impact on the loss, preventing the network from focusing on
the more accurate predictions. On the contrary, the loss (6)
enables to down-weight the contribution of these examples
by predicting a high variance parameter for them. Mod-
elling the flow estimation as a conditional predictive dis-
tribution thus improves the accuracy of the estimated flow
itself.

B.2. Training datasets

Due to the limited amount of available real corre-
spondence data, most matching methods resort to self-
supervised training, relying on synthetic image warps gen-
erated automatically. We here provide details on the syn-
thetic dataset that we use for self-supervised training, as
well as additional information on the implementation of the
perturbation data (Sec. 3.4 of the main paper). Finally, we
also describe the generation of the sparse ground-truth cor-
respondence data from the MegaDepth dataset [13].
Base synthetic dataset: For our base synthetic dataset,
we use the same data as in [25]. Specifically, pairs of im-
ages are created by warping a collection of images from the

Figure 2. Visualization of our perturbations applied to a pair of
reference and query images (Sec. 3.4 of the main paper).

DPED [9], CityScapes [3] and ADE-20K [29] datasets, ac-
cording to synthetic affine, TPS and homography transfor-
mations. The transformation parameters are the ones origi-
nally used in DGC-Net [16].

These image pairs are further augmented with additional
random independently moving objects. To do so, the ob-
jects are sampled from the COCO dataset [14], and inserted
on top of the images of the synthetic data using their seg-
mentation masks. To generate motion, we randomly sample
affine transformation parameters for the foreground objects,
which are independent of the background transformations.
This can be interpreted as both the camera and the objects
moving independently of each other. The final synthetic
flow is composed of the object motion flow field at the lo-
cation of the moving object in the reference image, or the
background flow field otherwise. It results in 40K image
pairs, cropped at resolution 520× 520.

Perturbation data for robust uncertainty estima-
tion: Even with independently moving objects, the net-
work still learns to primarily rely on interpolation when es-
timating the flow field and corresponding uncertainty map

relating an image pair. We here describe in more details
our data generation strategy for more robust uncertainty
prediction. From a base flow field Y ∈ RH×W×2 relat-
ing a reference image Ĩr ∈ RH×W×3 to a query image
Ĩq ∈ RH×W×3, we introduce a residual flow ε =

∑
i εi,

by adding small local perturbations εi ∈ RH×W×2. More
specifically, we create the residual flow by first generating
an elastic deformation motion field E on a dense grid of
dimension H × W , as described in [23]. Since we only
want to include perturbations in multiple small regions,
we generate binary masks Si ∈ RH×W×2, each delimit-
ing the area on which to apply one local perturbation εi.
The final residual flow (perturbations) thus take the form of
ε =

∑
i εi, where εi = E · Si. Finally, the query image

Iq = Ĩq is left unchanged while the reference Ir is gen-
erated by warping Ĩr according to the residual flow ε, as
Ir(x) = Ĩr(x+ ε(x)). The final perturbed flow map Y be-
tween Ir and Iq is achieved by composing the base flow Ỹ
with the residual flow ε, as Y (x) = Ỹ (x+ ε(x)) + ε(x).

In practise, for the elastic deformation fieldE, we use the
implementation of [1]. The masks Si should be between 0
and 1 and offer a smooth transition between the two, so that
the perturbations appear smoothly. To create each mask Si,
we thus generate a 2D Gaussian centered at a random loca-
tion and with a random standard deviation (up to a certain
value) on a dense grid of size H × W . It is then scaled
to 2.0 and clipped to 1.0, to obtain a smooth regions equal
to 1.0 where the perturbation will be applied, and transition
regions on all sides from 1.0 to 0.0.

In Fig. 2, we show examples of generated residual flows
and their corresponding perturbed reference Ir, for a partic-
ular base flow Y , and query Ĩr and reference Ĩq images. As
one can see, for human eye, it is almost impossible to detect
the presence of the perturbations on the perturbed reference
Ir. This will enable to ”fool” the network in homogeneous
regions, such as the road in the figure example, thus forc-
ing it to predict high uncertainty in regions where it cannot
identify them.

MegaDepth training: To generate the training pairs
with sparse ground-truth, we adapt the generation proto-
col of D2-Net [4]. Specifically, we use the MegaDepth
dataset, consisting of 196 different scenes reconstructed
from 1.070.468 internet photos using COLMAP [20]. The
camera intrinsics and extrinsics as well as depth maps from
Multi-View Stereo are provided by the authors for 102.681
images.

For training, we use 150 scenes and sample up to 500
random images with an overlap ratio of at least 30% in the
sparse SfM point cloud. For each pair, all points of the sec-
ond image with depth information are projected into the first
image. A depth-check with respect to the depth map of the
first image is also run to remove occluded pixels. It results
in around 58.000 training pairs, which we resized so that

their largest dimension is 520. Note that we use the same set
of training pairs at each training iteration. For the validation
dataset, we sample up to 100 image pairs from 25 different
scenes, leading to approximately 1800 image pairs.

During the second stage of training, we found it crucial
to train on both the synthetic dataset with perturbations and
the sparse data from MegaDepth. Training solely on the
sparse correspondences resulted in less reliable uncertainty
estimates.

C. Architecture details
In this section, we first describe the architecture of our

proposed uncertainty decoder (Sec. 3.3 of the main pa-
per). We then give additional details about our proposed
final architecture PDC-Net and its corresponding baseline
GLU-Net-GOCor*. We also describe the architecture of
BaseNet and its probabilistic derivatives, employed for the
ablation study. Finally, we share all training details and
hyper-parameters.

C.1. Architecture of the uncertainty decoder

Correlation uncertainty module: We first describe the ar-
chitecture of our Correlation Uncertainty Module Uθ (Sec.
3.3 of the main paper). The correlation uncertainty mod-
ule processes each 2D slice Cij·· of the correspondence
volume C independently. More practically, from the cor-
respondence volume tensor C ∈ Rb×h×w×(d×d), where b
indicates the batch dimension, we move the spatial dimen-
sions h × w into the batch dimension and we apply mul-
tiple convolutions in the displacement dimensions d × d,
i.e. on a tensor of shape (b × h × w) × d × d × 1. By
applying the strided convolutions, the spatial dimension is
gradually decreased, resulting in an uncertainty representa-
tion u ∈ R(b×h×w)×1×1×n, where n denotes the number
of channels. u is subsequently rearranged, and after drop-
ping the batch dimension, the outputted uncertainty tensor
is u ∈ Rh×w×n.

Note that while this is explained for a local correlation,
the same applies for a global correlation except that the dis-
placement dimensions correspond to h×w. In Tab. 1- 2, we
present the architecture of the convolution layers applied on
the displacements dimensions, for a local correlation with
search radius 4 and for a global correlation applied at di-
mension h× w = 16× 16, respectively.

Uncertainty predictor: We then give additional details of
the Uncertainty Predictor, that we denote Qθ (Sec. 3.3 of
the main paper). The uncertainty predictor takes the flow
field Y ∈ Rh×w×2 outputted from the flow decoder, along
with the output u ∈ Rh×w×n of the correlation uncertainty
module Uθ. In a multi-scale architecture, it additionally
takes as input the estimated flow field and predicted uncer-
tainty components from the previous level. At level l, for

each pixel location (i, j), this is expressed as:(
(α̃m)Mm=1, (hm)Mm=1

)l
= Qθ

(
Y l;ul; Φl−1

)
ij

(7)

where α̃m refers to the output of the uncertainty predictor,
which is then passed through a SoftMax layer to obtain the
final weights αm. σ2

m is obtained from hm according to
constraint equation (3) of the main paper.

In practise, we have found that instead of feeding the
flow field Y ∈ Rh×w×2 outputted from the flow decoder to
the uncertainty predictor, using the second last layer from
the flow decoder leads to slightly better results. This is be-
cause the second last layer from the flow decoder has larger
channel size, and therefore encodes more information about
the estimated flow.

Architecture-wise, the uncertainty predictor Qθ consists
of 3 convolutional layers. The numbers of feature channels
at each convolution layers are respectively 32, 16 and 2M
and the spatial kernel of each convolution is 3×3 with stride
of 1 and padding 1. The first two layers are followed by a
batch-normalization layer with a leaky-Relu non linearity.
The final output of the uncertainty predictor is the result of
a linear 2D convolution, without any activation.

C.2. Architecture of PDC-Net

We use GLU-Net-GOCor [26, 25] as our base architec-
ture, predicting the dense flow field relating a pair of im-
ages. It is a 4 level pyramidal network, using a VGG fea-
ture backbone. It is composed of two sub-networks, L-Net
and H-Net which act at two different resolutions. The L-Net
takes as input rescaled images to HL ×WL = 256 × 256
and process them with a global GOCor module followed by

Inputs Convolutions Output size

C; (b× h× w)× 9× 9× 1 conv0, K = (3× 3), s=1, p=0 (b× h× w)× 7× 7× 32

conv0; (b× h× w)× 7× 7× 32 conv1, K = (3× 3), s=1, p=0 (b× h× w)× 5× 5× 32

conv1; (b× h× w)× 5× 5× 32 conv2, K = (3× 3), s=1, p=0 (b× h× w)× 3× 3× 16

conv2; (b× h× w)× 3× 3× 16 conv3, K = (3× 3), s=1, p=0 (b× h× w)× 1× 1× n

Table 1. Architecture of the correlation uncertainty module for a
local correlation, with a displacement radius of 4. Implicit are the
BatchNorm and ReLU operations that follow each convolution,
except for the last one. K refers to kernel size, s is the used stride
and p the padding.

Inputs Convolutions Output size

C (b× h× w)× 16× 16× 1 conv0; K = (3× 3), s=1, p=0 (b× h× w)× 14× 14× 32

conv0; (b× h× w)× 14× 14× 32
3× 3 max pool, s=2
conv1, K = (3× 3), s=1, p=0 (b× h× w)× 5× 5× 32

conv1; (b× h× w)× 5× 5× 32 conv2, K = (3× 3), s=1, p=0 (b× h× w)× 3× 3× 16

conv2; (b× h× w)× 3× 3× 16 conv3, K = (3× 3), s=1, p=0 (b× h× w)× 1× 1× n

Table 2. Architecture of the correlation uncertainty module for a
global correlation, constructed at resolution 16 × 16. Implicit are
the BatchNorm and ReLU operations that follow each convolution,
except for the last one. K refers to kernel size, s is the used stride
and p the padding.

a local GOCor module. The resulting flow is then upsam-
pled to the lowest resolution of the H-Net to serve as initial
flow, by warping the query features according to the esti-
mated flow. The H-Net takes input images at unconstrained
resolution H ×W , and refines the estimated flow with two
local GOCor modules.

For the baseline GLU-Net-GOCor*, we adopt the GLU-
Net-GOCor architecture and simply replace the DenseNet
connections [8] of the flow decoders by standard residual
blocks. The mapping decoder is also modified to include
residual connections. This drastically reduces the number
of weights while not having any impact on performance.
As in [26, 25], the VGG-16 backbone is initialized to the
pre-trained weights on ImageNet.

From the baseline GLU-Net-GOCor*, we create our
probabilistic approach PDC-Net by inserting our uncer-
tainty decoder at each pyramid level. As noted in C.1, in
practise, we feed the second last layer from the flow de-
coder to the uncertainty predictor of each pyramid level in-
stead of the predicted flow field. It leads to slightly bet-
ter results. The uncertainty prediction is additionally prop-
agated from one level to the next. More specifically, the
flow decoder takes as input the uncertainty prediction (all
parameters Φ of the predictive distribution except for the
mean flow) of the previous level, in addition to its orig-
inal inputs (which include the mean flow of the previous
level). The uncertainty predictor also takes the uncertainty
and the flow estimated at the previous level. As explained
in Sec. 4.1 of the main paper, we use a constrained mix-
ture with M = 2 Laplace components. The first compo-
nent is set so that σ2

1 = 1, while the second is learned as
2 = β−2 ≤ σ2

2 ≤ β+
2 . Therefore, the uncertainty predictor

only estimates σ2
2 and (αm)M=2

m=1 at each pixel location. We
found that fixing σ2

1 = β−1 = β+
1 = 1.0 results in better per-

formance than for example β−1 = 0.0 < σ2
1 < β+

1 = 1.0.
Indeed, in the later case, during training, the network fo-
cuses primarily on getting the very accurate, and confident,
correspondences (corresponding to σ2

1) since it can arbi-
trarily reduce the variance. Generating fewer, but accurate
predictions then dominate during training to the expense
of other regions. This is effectively alleviated by setting
σ2
1 = 1.0, which can be seen as introducing a strict prior on

this parameter.

C.3. Inference multi-stage

Here, we provide implementation details for our multi-
stage inference strategy (Sec. 3.5 of the main paper). After
the first network forward pass, we select matches with a
corresponding confidence probability PR=1 superior to 0.1,
for R = 1. Since the network estimates the flow field at
a quarter of the original image resolution, we use the fil-
tered correspondences at the quarter resolution and scale
them to original resolution to be used for homography es-

timation. To estimate the homography, we use OpenCV’s
findHomography with RANSAC and an inlier threshold of
1 pixel.

C.4. Inference multi-scale

We then give additional details about our multi-scale
strategy (MS). We extend our two-stage refinement ap-
proach (Sec. 3.5) by resizing the reference image to differ-
ent resolutions. Specifically, following [22], we use seven
scales: 0.5, 0.88, 1, 1.33, 1.66 and 2.0. As for the imple-
mentation, to avoid obtaining very large input images (for
scaling ratio 2 for example), we use the following scheme:
we resize the reference image for scaling ratios below 1,
keeping the aspect ratio fixed and the query image un-
changed. For ratios above 1, we instead resize the query
image by one divided by the ratio, while keeping the refer-
ence image unchanged. This ensures that the resized images
are never larger than the original image dimensions. The re-
sulting image pairs are then passed through the network and
we fit a homography for each pair, using our predicted flow
and uncertainty map. In particular, as in our two-stage infer-
ence strategy, we select matches with a corresponding con-
fidence probability PR=1 superior to 0.1, for R = 1, at the
estimated flow resolution, i.e. at a quarter of the input image
resolution. To estimate the homography, we use OpenCV’s
findHomography with RANSAC and an inlier threshold of
1 pixel. From all image pairs with their corresponding scal-
ing ratios, we then select the homography with the highest
percentage of inliers, and scale it to the images original res-
olutions. The original image pair is then coarsely aligned
using this homography and from there we follow the same
procedure, as explained in Sec. 3.5.

C.5. Architecture of BaseNet

As baseline to use in our ablation study, we use BaseNet,
introduced in [25] and inspired by GLU-Net [26]. It esti-
mates the dense flow field relating an input image pair. The
network is composed of three pyramid levels and it uses
VGG-16 [2] as feature extractor backbone. The coarsest
level is based on a global correlation layer, followed by
a mapping decoder estimating the correspondence map at
this resolution. The two next pyramid levels instead rely
on local correlation layers. The dense flow field is then es-
timated with flow decoders, taking as input the correspon-
dence volumes resulting from the local feature correlation
layers. Moreover, BaseNet is restricted to a pre-determined
input resolution HL ×WL = 256 × 256 due to its global
correlation at the coarsest pyramid level. It estimates a fi-
nal flow-field at a quarter of the input resolution HL×WL,
which needs to be upsampled to original image resolution
H × W . The mapping and flow decoders have the same
number of layers and parameters as those used for GLU-
Net [26]. However, here, to reduce the number of weights,

we use feed-forward layers instead of DenseNet connec-
tions [8] for the flow decoders.

We create the different probabilistic versions of BaseNet,
presented in the ablation study Tab. 4 of the main paper, by
modifying the architecture minimally. Moreover, for the
probabilistic versions modeled with a constrained mixture,
we use M = 2 Laplace components. The first compo-
nent is set so that σ2

1 = 1, while the second is learned as
2 = β−2 ≤ σ2

2 ≤ β+
2 = ∞. For the network referred to as

PDC-Net-s, which also employs our proposed uncertainty
architecture (Sec. 3.3 of the main paper), we add our uncer-
tainty decoder at each pyramid layer, in a similar fashion as
for our final network PDC-Net. We train all networks on the
synthetic data with the perturbations, which corresponds to
our first training stage (Sec. 4.1).

C.6. Implementation details

Since we use pyramidal architectures with K levels, we
employ a multi-scale training loss, where the loss at differ-
ent pyramid levels account for different weights.

L(θ) =

K∑
l=1

γlLl + η ‖θ‖ , (8)

where γl are the weights applied to each pyramid level and
Ll is the corresponding loss computed at each level, which
refers to the L1 loss for the non-probabilistic baselines
and the negative log-likelihood loss (5) for the probabilis-
tic models, including our approach PDC-Net. The second
term of the loss (8) regularizes the weights of the network.
Moreover, during the self-supervised training, we do not ap-
ply any mask, which means that out-of-view regions (that
do not have visible matches) are included in the training
loss. Since the image pairs are related by synthetic transfor-
mations, these regions do have a correct ground-truth flow
value. When finetuning on MegaDepth images however, the
loss is applied only at the locations of the sparse ground-
truth.

For training, we use similar training parameters as
in [26]. Specifically, as a preprocessing step, the training
images are mean-centered and normalized using mean and
standard deviation of ImageNet dataset [11]. For all local
correlation layers, we employ a search radius r = 4.

For the training of BaseNet and its probabilistic deriva-
tives (including PDC-Net-s), which have a pre-determined
fixed input image resolution of (HL ×WL = 256 × 256),
we use a batch size of 32 and train for 106.250 itera-
tions. We set the initial learning rate to 10−2 and gradu-
ally decrease it by 2 after 56.250, 75.000 and 93.750 iter-
ations. The weights in the training loss (8) are set to be
γ1 = 0.32, γ2 = 0.08, γ3 = 0.02 and to compute the loss,
we down-sample the ground-truth to estimated flow resolu-
tion at each pyramid level.

For GLU-Net-GOCor* and PDC-Net, we down-sample
and scale the ground truth from original resolutionH×W to
HL ×WL in order to obtain the ground truth flow fields for
L-Net. During the first stage of training, i.e. on purely syn-
thetic images, we down-sample the ground truth from the
base resolution to the different pyramid resolutions with-
out further scaling, so as to obtain the supervision signals
at the different levels. During this stage, the weights in the
training loss (8) are set to be γ1 = 0.32, γ2 = 0.08, γ3 =
0.02, γ4 = 0.01, which ensures that the loss computed
at each pyramid level contributes equally to the final loss
(8). During the second stage of training however, which
includes MegaDepth, since the ground-truth is sparse, it
is inconvenient to down-sample it to different resolutions.
We thus instead up-sample the estimated flow field to the
ground-truth resolution and compute the loss at this resolu-
tion. In practise, we found that both strategies lead to sim-
ilar results during the self-supervised training. During the
second training stage, the weights in the training loss (8) are
instead set to γ1 = 0.08, γ2 = 0.08, γ3 = 0.02, γ4 = 0.02,
which also ensures that the loss terms of all pyramid levels
have the same magnitude.

During the first training stage on uniquely the self-
supervised data, we train for 135.000 iterations, with batch
size of 15. The learning rate is initially equal to 10−4, and
halved after 80.000 and 108.000 iterations. Note that during
this first training stage, the feature back-bone is frozen, but
further finetuned during the second training stage. While
finetuning on the composition of MegaDepth and the syn-
thetic dataset, the batch size is reduced to 10 and we fur-
ther train for 195.000 iterations. The initial learning rate is
fixed to 5.10−5 and halved after 120.000 and 180.000 iter-
ations. The feature back-bone is also finetuned according
to the same schedule, but with an initial learning rate of
10−5. For the GOCor modules [25], we train with 3 local
and global optimization iterations.

Our system is implemented using Pytorch [18] and
our networks are trained using Adam optimizer [10] with
weight decay of 0.0004.

D. Experimental setup and datasets
In this section, we first provide details about the evalua-

tion datasets and metrics. We then explain the experimental
set-up in more depth.

D.1. Evaluation metrics

AEPE: AEPE is defined as the Euclidean distance between
estimated and ground truth flow fields, averaged over all
valid pixels of the reference image.

PCK: The Percentage of Correct Keypoints (PCK) is com-
puted as the percentage of correspondences x̃j with an Eu-
clidean distance error ‖x̃j − xj‖ ≤ T , w.r.t. to the ground

truth xj , that is smaller than a threshold T .

F1: F1 designates the percentage of outliers averaged over
all valid pixels of the dataset [6]. They are defined as fol-
lows, where Y indicates the ground-truth flow field and Ŷ
the estimated flow by the network.

F1 =

∥∥∥Y − Ŷ ∥∥∥ > 3 and ‖Y−Ŷ ‖‖Y ‖ > 0.05

#valid pixels
(9)

Sparsification Errors: Sparsification plots measure how
well the estimated uncertainties fit the true errors. The pix-
els of a flow field are sorted according to their correspond-
ing uncertainty, in descending order. An increasing percent-
age of the pixels is subsequently removed, and the AEPE or
PCK of the remaining pixels is calculated. We refer to these
curves as Sparsification. As reference, we also compute the
Oracle, which represents the AEPE or PCK calculated when
the pixels are ranked according to the true error, computed
with the ground-truth flow field. Ideally, if the estimated
uncertainty is a good representation of the underlying error
distribution, the Sparsification should be close to the Ora-
cle. To compare methods, since each approach results in
a different oracle, we use the Area Under the Sparsifica-
tion Error Curve (AUSE), where the Sparsification Error is
defined as the difference between the sparsification and its
oracle. We compute the sparsification error curve on each
image pair, and normalize it to [0, 1]. The final error curve
is the average over all image pairs of the dataset.

mAP: For the task of pose estimation, we use mAP as the
evaluation metric, following [28]. The absolute rotation er-
ror |Rerr| is computed as the absolute value of the rotation
angle needed to align ground-truth rotation matrix R with
estimated rotation matrix R̂, such as

Rerr = cos−1
Tr(R−1R̂)− 1

2
, (10)

where operator Tr denotes the trace of a matrix. The trans-
lation error Terr is computed similarly, as the angle to align
the ground-truth translation vector T with the estimated
translation vector T̂ .

Terr = cos−1
T · T̂

‖T‖
∥∥∥T̂∥∥∥ , (11)

where · denotes the dot-product. The accuracy Acc-κ for
a threshold κ is computed as the percentage of image pairs
for which the maximum of Terr and |Rerr| is below this
threshold. mAP is defined according to original implemen-
tation [28], i.e. mAP @5° is equal to Acc-5, mAP @10° is
the average of Acc-5 and Acc-10, while mAP @20° is the
average over Acc-5, Acc-10, Acc-15 and Acc-20.

D.2. Evaluation datasets and set-up

MegaDepth: The MegaDepth dataset depicts real scenes
with extreme viewpoint changes. No real ground-truth cor-
respondences are available, so we use the result of SfM
reconstructions to obtain sparse ground-truth correspon-
dences. We follow the same procedure and test images
than [22]. More precisely, we randomly sample 1600 pairs
of images that shared more than 30 points. The test pais
are from different scenes than the ones we used for training
and validation. We use 3D points from SfM reconstruc-
tions and project them onto the pairs of matching images to
obtain correspondences. It results in approximately 367K
correspondences. During evaluation, following [22], all the
images are resized to have minimum dimension 480 pixels.

RobotCar: In RobotCar, we used the correspondences
originally introduced by [15]. During evaluation, follow-
ing [22], all the images are resized to have minimum di-
mension 480 pixels.

ETH3D: The Multi-view dataset ETH3D [21] contains 10
image sequences at 480× 752 or 514× 955 resolution, de-
picting indoor and outdoor scenes. They result from the
movement of a camera completely unconstrained, used for
benchmarking 3D reconstruction. The authors additionally
provide a set of sparse geometrically consistent image cor-
respondences (generated by [20]) that have been optimized
over the entire image sequence using the reprojection error.
We sample image pairs from each sequence at different in-
tervals to analyze varying magnitude of geometric transfor-
mations, and use the provided points as sparse ground truth
correspondences. This results in about 500 image pairs in
total for each selected interval, or 600K to 1000K corre-
spondences. Note that, in this work, we computed the PCK
over the whole dataset per interval, to be consistent with
RANSAC-Flow. This metric is different than the one orig-
inally used by [26, 25] for ETH3D, where the PCK was
calculated per image instead.

KITTI: The KITTI dataset [6] is composed of real road se-
quences captured by a car-mounted stereo camera rig. The
KITTI benchmark is targeted for autonomous driving ap-
plications and its semi-dense ground truth is collected using
LIDAR. The 2012 set only consists of static scenes while
the 2015 set is extended to dynamic scenes via human anno-
tations. The later contains large motion, severe illumination
changes, and occlusions.

YFCC100M: The YFCC100M dataset represents touristic
landmark images. The ground-truth poses were created by
generating 3D reconstructions from a subset of the collec-
tions [7]. Since our network PDC-Net outputs flow fields at
a quarter of the images original resolution, which are then
usually up-sampled, for pose estimation, we directly select
matches at the outputted resolution and further scale the

MegaDepth RobotCar KITTI-2012 KITTI-2015 YFCC100M
PCK-1 PCK-3 PCK-5 PCK-1 PCK-3 PCK-5 AEPE ↓ F1 (%) ↓ AEPE ↓ F1 (%) ↓ mAP @5° mAP @10° mAP @20°

DGC-Net [16] 3.55 20.33 32.28 1.19 9.35 20.17 8.50 32.28 14.97 50.98 6.73 12.55 22.42
GLU-Net [26] 21.58 52.18 61.78 2.30 17.15 33.87 3.14 19.76 7.49 33.83 21.35 30.73 42.91
GLU-Net-GOCor [25] 37.28 61.18 68.08 2.31 17.62 35.18 2.68 15.43 6.68 27.57 24.53 33.56 45.34
GLU-Net-GOCor* 41.36 62.37 67.23 2.07 15.57 30.86 2.95 14.05 7.14 25.02 24.55 32.55 43.31
PDC-Net 53.06 70.88 73.94 2.54 18.85 36.24 2.44 11.09 6.82 21.79 47.40 56.46 65.33
PDC-Net (MS) 56.49 76.65 80.18 2.53 18.68 36.03 - - - - 53.80 63.94 73.86

Table 3. Results on multiple geometric and optical flow datasets as well as for pose estimation on the YFCC100M dataset. All methods are
trained on purely self-supervised data.

correspondences to original resolution. From the estimated
dense flow field, we identify the accurate correspondences
by thresholding the predicted confidence map PR (Sec 3.5
of the main paper, and Sec. A). Specifically, we select cor-
respondences for which the corresponding confidence level
at R = 1 is superior to 0.1, such as PR=1 > 0.1. We
then use the selected matches to estimate an essential matrix
with RANSAC [5] and 5-pt Nister algorithm [17], relying
on OpenCV’s ’findEssentialMat’ with an inlier threshold of
1 pixel divided by the focal length. Rotation matrix R̂ and
translation vector T̂ are finally computed from the estimated
essential matrix, using OpenCV’s ’recoverPose’. The orig-
inal images are resized to have a minimum dimension of
480, similar to [22], and the intrinsic camera parameters are
modified accordingly.

3D reconstruction on Aachen dataset: We use the set-up
of [19], which provides a list of image pairs to match. We
compute dense correspondences between each pair. We re-
size the images by keeping the same aspect ratio so that the
minimum dimension is 600. We select matches for which
the confidence probability PR=1 is above 0.3, and feed them
to COLMAP reconstruction pipeline [20]. Again, we select
matches at a quarter of the image resolution and scale the
matches to original resolution. Following Fig. 2 of the main
paper, additional qualitative representations of the resulting
3D reconstruction are shown in Fig. 6.

On all datasets, we use our multi-stage strategy (Sec.
3.5 of the main paper), except for the KITTI datasets. In-
deed, on optical flow data, which shows limited displace-
ments and appearance variation, multi-stage strategy does
not bring any improvements, and solely increases the run-
time. For evaluation, we use 3 and 7 steepest descent iter-
ations in the global and local GOCor modules [25] respec-
tively. We reported results of RANSAC-Flow [22] using
MOCO features, which gave the best results overall.

E. Detailed results

In this section, we first provide detailed results on uncer-
tainty estimation. Subsequently, we present results of our
approach after solely the first training stage, i.e. on uniquely
self-supervised data. Finally, we present extensive qualita-
tive results and comparisons.

E.1. Detailed results on uncertainty estimation

Here, we present sparsification errors curves, computed
on the RobotCar dataset. As in the main paper, Sec. 4.3, we
compare our probabilistic approach PDC-Net, to dense ge-
ometric methods providing a confidence estimation, DGC-
Net [16] and RANSAC-Flow [22]. Fig. 3 depicts the spar-
sification error curves on RobotCar. As on MegaDepth, our
approach PDC-Net estimates uncertainty map which better
fit the underlying errors.

E.2. Results when trained on purely synthetic data

For completeness, here, we show results of our approach
PDC-Net, after only the first stage of training (described in
Sec. 4.1 of the main paper and Sec. B), i.e. after training on
purely synthetically generated image warps, on which we
overlaid moving objects and our flow perturbations (Sec.
3.4 of the main paper). For fair comparison, we compare to
self-supervised approaches that also only rely on synthetic
image warps, namely DGC-Net [16], GLU-Net [26] and
GLU-Net-GOCor [26, 25]. We also include our baseline,
the non probabilistic model GLU-Net-GOCor* trained on
the same data. Results on multiple datasets are presented in
Tab. 3. Our approach PDC-Net outperforms all other self-
supervised methods, particularly in terms of accuracy (PCK
and F1). Notably, our probabilistic modeling of the prob-
lem improves the learning, leading to large gains in flow
estimation accuracy, as evidenced by comparing PDC-Net
to non probabilistic baseline GLU-Net-GOCor*. Also note
that for a single forward pass, PDC-Net only increases in-
ference time by 14.3% over baseline GLU-Net-GOCor* for
drastically better results.

Moreover, for the non probabilistic methods, we com-

0.0 0.2 0.4 0.6 0.8 1.0
Removing x fraction of pixels

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
pa

rs
ifi

ca
ti

on
E

rr
or

fo
r

A
E

P
E

RANSAC-Flow (0.4718)

DGC-Net (0.2405)

PDC-Net (0.1755)

0.0 0.2 0.4 0.6 0.8 1.0
Removing x fraction of pixels

0.0

0.1

0.2

0.3

0.4

0.5

S
pa

rs
ifi

ca
ti

on
E

rr
or

fo
r

P
C

K
-5

RANSAC-Flow (0.1994)

DGC-Net (0.1234)

PDC-Net (0.1192)

Figure 3. Sparsification Error plots for AEPE (left) and PCK-5
(right) on RobotCar. Smaller AUSE (in parenthesis) is better.

KITTI-2015 MegaDepth YFCC100M
EPE F1 (%) AUSE PCK-1 (%) PCK-5 (%) AUSE mAP @5° mAP @10°

Uncertainty not propagated between levels 6.76 31.84 0.212 29.9 65.13 0.213 31.50 42.19
PDC-Net-s 6.66 32.32 0.205 32.51 66.50 0.197 33.77 45.17

M = 2; 0.0 < σ2
1 < 1.0, 2.0 < σ2

2 <∞ 6.69 32.58 0.181 32.47 65.45 0.205 30.50 40.75
M = 2; σ2

1 = 1.0, 2.0 < σ2
2 <∞ (PDC-Net-s) 6.66 32.32 0.205 32.51 66.50 0.197 33.77 45.17

M = 2; σ2
1 = 1.0, 2.0 < σ2

2 < β+
2 = s2 6.61 31.67 0.208 31.83 66.52 0.204 33.05 44.48

M = 2; σ2
1 = 1.0, 2.0 < σ2

2 < β+
2 = s2 6.61 31.67 0.208 31.83 66.52 0.204 33.05 44.48

M = 3; σ2
1 = 1.0, 2.0 < σ2

2 < β+
2 = s2, σ2

3 = s2 6.41 30.54 0.212 31.89 66.10 0.214 34.90 45.86

Table 4. Ablation study. For all methods, we model the flow as a constrained mixture of Laplace distributions (Sec. 3.2 of the main paper),
and we use our uncertainty prediction architecture (Sec. 3.3 of the main paper). In the top part, we show the impact of propagating the
uncertainty estimates in a multi-scale architecture. In the second part, we compare different parametrization of the constrained mixture
(Sec. 3.2 of the main paper, mostly equation (3)). Here, s refers to the image size used during training, i.e. s = 256. In the bottom part,
we analyse the impact of the number of components M used in the constrained mixture model.

puted the relative poses on YFCC100M using all estimated
dense correspondences and RANSAC. As previously stated,
the poor results emphasize the necessity to infer a confi-
dence prediction along with the dense flow prediction, in or-
der to be able to use the estimated matches for down-stream
tasks.

E.3. Qualitative results

Here, we first present qualitative results of our approach
PDC-Net on the KITTI-2015 dataset in Fig. 5. PDC-Net
clearly identifies the independently moving objects, and
does very well in static scenes with only a single moving
object, which are particularly challenging since not repre-
sented in the training data.

In Fig. 8 and Fig. 9, 10, 11, we qualitatively compare
our approach PDC-Net to the baseline GLU-Net-GOCor*
on images of the RobotCar and the Megadepth datasets re-
spectively. We additionally show the performance of our
uncertainty estimation on these examples. By overlaying
the warped query image with the reference image at the lo-
cations of the identified accurate matches, we observe that
our method produces highly precise correspondences. Our
uncertainty estimates successfully identify accurate flow re-
gions and also correctly exclude in most cases homoge-
neous and sky regions. These examples show the benefit
of confidence estimation for high quality image alignment,
useful e.g. in multi-frame super resolution [27]. Texture or
style transfer (e.g. for AR) also largely benefit from it.

In Fig. 7, we visually compare the estimated confidence
maps of RANSAC-Flow [22] and our approach PDC-Net
on the YFCC100M dataset. Our confidence maps can ac-
curately segment the object from the background (sky). On
the other hand, RANSAC-Flow predicts confidence maps,
which do not exclude unreliable matching regions, such as
the sky. Using these regions for pose estimation for exam-
ple, would result in a drastic drop in performance, as evi-
denced in Tab. 3 of the main paper. Note also the ability
of our predicted confidence map to identify small accurate

flow regions, even in a dominantly failing flow field. This is
the case in the fourth example from the top in Fig. 7.

F. Detailed ablation study
Finally, we provide detailed ablative experiments. As in

Sec. 4.5 of the main paper, we use BaseNet as base network
to create the probabilistic models, as described in Sec. C.
Similarly, all networks are trained on solely the first training
stage.
Uncertainty architecture, sparsification plots: For com-
pleteness, we present the full sparsification error plots for
different uncertainty prediction architectures in Fig. 4. They
correspond to Tab. 4, middle part of the main paper.
Confidence value, variance against probability of inter-
val: We here compare using the variance of the constrained
mixture probability density V =

∑M
m=1 αmσ

2
m, or the

0.0 0.2 0.4 0.6 0.8 1.0
Removing x fraction of pixels

0.0

0.1

0.2

0.3

0.4

0.5

S
pa

rs
ifi

ca
ti

on
E

rr
or

fo
r

A
E

P
E

Common decoder, variance (0.293)

Common decoder, probability interval (0.2126)

Corr. Uncertainty module, variance (0.2832)

Corr. Uncertainty module, probability interval (0.2782)

Uncertainty decoder (PDC-Net-s), variance (0.2408)

Uncertainty decoder (PDC-Net-s), probability interval (0.197)

0.0 0.2 0.4 0.6 0.8 1.0
Removing x fraction of pixels

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
pa

rs
ifi

ca
ti

on
E

rr
or

fo
r

A
E

P
E

Common decoder, variance (0.1787)

Common decoder, probability interval (0.1711)

Corr. Uncertainty module, variance (0.4635)

Corr. Uncertainty module, probability interval (0.4176)

Uncertainty decoder (PDC-Net-s), variance (0.2635)

Uncertainty decoder (PDC-Net-s), probability interval (0.2049)

Figure 4. Sparsification Error plots for AEPE on MegaDepth (top)
and KITTI-2015 (bottom), for different uncertainty decoder archi-
tecture, and using either the variance V or our probability interval
PR=1 as confidence measure. Smaller AUSE (in parenthesis) is
better. All networks are modelled with a constrained mixture of
Laplace, and trained only on the first stage (Sec. 4.1 of paper).

probability of the confidence interval PR (Sec. 3.5 of the
main paper), as a final pixel-wise confidence value, asso-
ciated with the predicted flow field. In Fig. 4, for each of
the compared uncertainty prediction architecture, we fur-
ther compute the sparsification error plots, using either the
inverse of the variance 1/V , or the probability PR=1, as
confidence measure. On both MegaDepth and KITTI-2015,
the probability of the confidence interval PR=1 appears as a
better performing measure of the uncertainty.

Propagation of uncertainty components: In a multi-scale
network architecture, the predicted uncertainty parameters
of the mixture at a particular network level can be further
propagated to the next level. We use this strategy, by feed-
ing the predicted uncertainty components of the previous
level to the flow decoder and to the uncertainty predic-
tor of the current level. In Tab. 4 top part, we show the
impact of this uncertainty propagation. We compare our
approach PDC-Net-s with multi-scale uncertainty propaga-
tion, to a network where uncertainty estimation at each level
is done independently of the previous one. For all presented
datasets and metrics, propagating the uncertainty predic-
tions boosts the performance of the final network. Only the
F1 metric on KITTI-2015 is slightly worst.

Constrained mixture parametrization: In Tab. 4, mid-
dle part, we then compare different parametrization for the
constrained mixture of Laplace distributions. In our final
network, we fixed the first component σ2

1 of the mixture,
as σ2

1 = β−1 = β+
1 = 1.0. Firstly, we compare with a

version where the first component is constrained instead as
β−1 = 0.0 < σ2

1 < β+
1 = 1.0. Both networks obtain similar

flow performance results on KITTI-2015 and MegaDepth.
Only on optical flow dataset KITTI-2015, the alternative of
σ2
1 = β−1 = β+

1 = 1.0 obtains a better AUSE, which is
explained by the fact that KITTI-2015 shows ground-truth
displacements with a much smaller magnitude than in the
geometric matching datasets. When estimating the flow on
KITTI, it thus results in a larger proportion of very small
flow errors (lower EPE and higher PCK than on geometric
matching data). As a result, on this dataset, being able to
model very small error (with σ2

1 < 1) is beneficial. How-
ever, fixing σ2

1 = 1.0 instead produces better AUSE on
MegaDepth and it gives significantly better results for pose
estimation on YFCC100M. As previously explained in Sec.
C.2, fixing σ2

1 = 1 enables for the network to equally fo-
cus on getting accurate correspondences (bounded by the
fixed σ2

1) and improving the inaccurate flow regions during
training. It can be seen as introducing an additional prior
constraint on the distribution.

We then compare leaving the second component’s higher
bound unconstrained, as 2.0 < σ2

2 < ∞ (PDC-Net-s) to
constraining it, as 2.0 < σ2

2 < β+
2 = s2, where s refers

to the image size used during training. All results are very
similar, the fully constrained network obtains slightly bet-

ter flow results but slightly worst uncertainty performance
(AUSE). However, we found that constraining β+

2 leads to
a more stable training in practise, which is why we adopted
the constrains σ2

1 = β−1 = β+
1 = 1, and 2.0 = β−2 ≤ σ2

2 ≤
β+
2 = s2 for our final network.

Number of components of the constrained mixture: Fi-
nally, we compare M = 2 and M = 3 Laplace compo-
nents used in the constrained mixture in Tab. 4, bottom
part. In the case of M = 3, the first two components
are set similarly to the case M = 2, i.e. as σ2

1 = 1.0
and 2.0 < σ2

2 < β+
2 = s2 where β+

2 is fixed to the im-
age size used during training (256 here). The third com-
ponent is set as σ2

3 = β+
3 = β−3 = β+

2 . The aim of
this third component is to identify outliers (such as out-of-
view pixels) more clearly. The 3 components approach ob-
tains a better F1 value on KITTI-2015 and slightly better
pose estimation results on YFCC100M. However, its per-
formance on MegaDepth and in terms of pure uncertainty
estimation (AUSE) slightly degrade. As a result, for sim-
plicity we adopted the version with M = 2 Laplace com-
ponents. Note, however, that more components could easily
be added.

Figure 5. Qualitative examples of our approach PDC-Net applied to images of KITTI-2015. We plot directly the estimated flow field for
each image pair.

Figure 6. Visualization of the 3D reconstruction of Aachen city.

Figure 7. Visual comparison of RANSAC-Flow and our approach PDC-Net on image pairs of the YFCC100M dataset [24]. In the 3rd and
4th columns, we visualize the query images warped according to the flow fields estimated by the RANSAC-Flow and PDC-Net respectively.
Both networks also predict a confidence map, according to which the regions represented in respectively yellow and red, are unreliable or
inaccurate matching regions. In the last column, we overlay the reference image with the warped query from PDC-Net, in the identified
accurate matching regions (lighter color).

Figure 8. Qualitative examples of our approach PDC-Net and corresponding non-probabilistic baseling GLU-Net-GOCor*, applied to
images of the RobotCar dataset [12]. In the 3rd and 4th columns, we visualize the query images warped according to the flow fields
estimated by the GLU-Net-GOCor* and PDC-Net respectively. PDC-Net also predicts a confidence map, according to which the regions
represented in red, are unreliable or inaccurate matching regions. In the last column, we overlay the reference image with the warped query
from PDC-Net, in the identified accurate matching regions (lighter color).

Figure 9. Qualitative examples of our approach PDC-Net and corresponding non-probabilistic baseline GLU-Net-GOCor*, applied to
images of the MegaDepth dataset [13]. In the 3rd and 4th columns, we visualize the query images warped according to the flow fields
estimated by the GLU-Net-GOCor* and PDC-Net respectively. PDC-Net also predicts a confidence map, according to which the regions
represented in red, are unreliable or inaccurate matching regions. In the last column, we overlay the reference image with the warped query
from PDC-Net, in the identified accurate matching regions (lighter color).

Figure 10. Qualitative examples of our approach PDC-Net and corresponding non-probabilistic baseline GLU-Net-GOCor*, applied to
images of the MegaDepth dataset [13]. In the 3rd and 4th columns, we visualize the query images warped according to the flow fields
estimated by the GLU-Net-GOCor* and PDC-Net respectively. PDC-Net also predicts a confidence map, according to which the regions
represented in red, are unreliable or inaccurate matching regions. In the last column, we overlay the reference image with the warped query
from PDC-Net, in the identified accurate matching regions (lighter color).

Figure 11. Qualitative examples of our approach PDC-Net and corresponding non-probabilistic baseline GLU-Net-GOCor*, applied to
images of the MegaDepth dataset [13]. In the 3rd and 4th columns, we visualize the query images warped according to the flow fields
estimated by the GLU-Net-GOCor* and PDC-Net respectively. PDC-Net also predicts a confidence map, according to which the regions
represented in red, are unreliable or inaccurate matching regions. In the last column, we overlay the reference image with the warped query
from PDC-Net, in the identified accurate matching regions (lighter color).

References
[1] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khved-

chenya, Alex Parinov, Mikhail Druzhinin, and Alexandr A.
Kalinin. Albumentations: Fast and flexible image augmen-
tations. Information, 11(2), 2020. 3

[2] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into convo-
lutional nets. In BMVC, 2014. 5

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc.
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 3

[4] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-Net:
A Trainable CNN for Joint Detection and Description of Lo-
cal Features. In Proceedings of the 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2019.
3

[5] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM,
24(6):381–395, June 1981. 8

[6] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. I. J.
Robotic Res., 32(11):1231–1237, 2013. 7

[7] Jared Heinly, Johannes Lutz Schönberger, Enrique Dunn,
and Jan-Michael Frahm. Reconstructing the World* in
Six Days *(As Captured by the Yahoo 100 Million Im-
age Dataset). In Computer Vision and Pattern Recognition
(CVPR), 2015. 7

[8] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pages 2261–2269. IEEE Computer Society,
2017. 5, 6

[9] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth
Vanhoey, and Luc Van Gool. Dslr-quality photos on mobile
devices with deep convolutional networks. In IEEE Interna-
tional Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, pages 3297–3305, 2017. 3

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 6

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held De-
cember 3-6, 2012, Lake Tahoe, Nevada, United States., pages
1106–1114, 2012. 6

[12] Måns Larsson, Erik Stenborg, Lars Hammarstrand, Marc
Pollefeys, Torsten Sattler, and Fredrik Kahl. A cross-season
correspondence dataset for robust semantic segmentation. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 9532–9542, 2019. 14

[13] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 2041–2050, 2018. 2, 15, 16, 17

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuyte-
laars, editors, Computer Vision – ECCV 2014, pages 740–
755, Cham, 2014. Springer International Publishing. 3

[15] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul New-
man. 1 Year, 1000km: The Oxford RobotCar Dataset. The
International Journal of Robotics Research (IJRR), 36(1):3–
15, 2017. 7

[16] Iaroslav Melekhov, Aleksei Tiulpin, Torsten Sattler, Marc
Pollefeys, Esa Rahtu, and Juho Kannala. DGC-Net: Dense
geometric correspondence network. In Proceedings of the
IEEE Winter Conference on Applications of Computer Vision
(WACV), 2019. 3, 8

[17] David Nistér. An efficient solution to the five-point rela-
tive pose problem. IEEE Trans. Pattern Anal. Mach. Intell.,
26(6):756–777, June 2004. 8

[18] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in PyTorch. In NIPS Autodiff Workshop, 2017.
6

[19] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii,
Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi
Okutomi, Marc Pollefeys, Josef Sivic, Fredrik Kahl, and
Tomás Pajdla. Benchmarking 6dof outdoor visual localiza-
tion in changing conditions. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018, pages 8601–8610,
2018. 8

[20] Johannes L. Schönberger and Jan-Michael Frahm. Structure-
from-motion revisited. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 4104–4113, 2016. 3,
7, 8

[21] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages
2538–2547, 2017. 7

[22] Xi Shen, François Darmon, Alexei A Efros, and Mathieu
Aubry. Ransac-flow: generic two-stage image alignment. In
16th European Conference on Computer Vision, 2020. 5, 7,
8, 9

[23] Patrice Y. Simard, Dave Steinkraus, and John C. Platt. Best
practices for convolutional neural networks applied to visual

document analysis. In Proceedings of the Seventh Interna-
tional Conference on Document Analysis and Recognition -
Volume 2, ICDAR ’03, page 958, USA, 2003. IEEE Com-
puter Society. 3

[24] Bart Thomee, David A. Shamma, Gerald Friedland, Ben-
jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and
Li-Jia Li. YFCC100M: the new data in multimedia research.
Commun. ACM, 59(2):64–73, 2016. 13

[25] Prune Truong, Martin Danelljan, Luc Van Gool, and Radu
Timofte. GOCor: Bringing globally optimized correspon-
dence volumes into your neural network. In Annual Confer-
ence on Neural Information Processing Systems, NeurIPS,
2020. 2, 4, 5, 6, 7, 8

[26] Prune Truong, Martin Danelljan, and Radu Timofte. GLU-
Net: Global-local universal network for dense flow and cor-
respondences. In 2020 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2020, 2020. 4, 5, 6, 7, 8

[27] Bartlomiej Wronski, Ignacio Garcia-Dorado, Manfred Ernst,
Damien Kelly, Michael Krainin, Chia-Kai Liang, Marc
Levoy, and Peyman Milanfar. Handheld multi-frame super-
resolution. ACM Trans. Graph., 38(4):28:1–28:18, 2019. 9

[28] Jiahui Zhang, Dawei Sun, Zixin Luo, Anbang Yao, Lei
Zhou, Tianwei Shen, Yurong Chen, Hongen Liao, and Long
Quan. Learning two-view correspondences and geometry us-
ing order-aware network. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019, pages 5844–5853,
2019. 7

[29] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic un-
derstanding of scenes through the ADE20K dataset. Int. J.
Comput. Vis., 127(3):302–321, 2019. 3

