
A. Supplementary materials for “ColorRL:
Reinforced Coloring for End-to-End In-
stance Segmentation”

A.1. PixelRL

In this work, we employed the method introduced by Fu-

ruta et al. [3], which uses an efficient technique within a

multi-agent system (PixelRL) for image processing. The

technique works well with the asynchronous actor-critic

(A3C) algorithm [5] and other reinforcement learning algo-

rithms for a discrete environment like deep Q-network [6].

In the PixelRL problem setting, an image I has a set of pix-

els V = {v1, v2, ..., vN} . Each vi has a corresponding

state s
(t)
i at time step t. A pixel-level agent with policy

π(a
(t)
i | s(t)i ) is assigned to each pixel vi. State s(t+1) =

(s
(t+1)
1 , s

(t+1)
2 , ..., s

(t+1)
N ) and reward rt = (rt1, r

t
2, ..., r

t
N )

are obtained from the environment by taking action at =
(at1, a

t
2, ..., a

t
N ), ati ∈ A. In our work, A, which represents

the binary segmentation map of multiple objects at a time

step, consists of two values: 0 and 1. The agents try to learn

a policy that maximize the mean of their total expected re-

ward:
π∗ = argmaxπ Eπ(

∑∞
t=0 γ

tr̄t), r̄t = 1
N

∑N
i=1 r

t
i

where r̄(t) is the mean of all the rewards rti received by the agents

at time step t. For more information, see Furuta et al. [3]. At

each time step t, with state s(t), each pixel-level agent computes

the value function V(s(t)) and policy function π(s(t)). V(s(t))
estimates the expected reward an agent can get from the state s(t),
which implies how good the state s(t) is. Loss functions Li

value of

V and Li
policy of π for a single agent at pixel vi are computed as

follows:

N-step return:

R
(t)
i = r

(t)
i + γr

(t+1)
i + γ2r

(t+2)
i + . . .

+ γn−1r
(t+n−1)
i + γnV(s(t+n)

i ))

Value loss:

Li
value = (R

(t)
i − V(s(t)i ))2

Policy loss:

Li
policy = −log(π(a

(t)
i | s(t))A(s

(t)
i ))

where At = R
(t)
i − V(s(t)i ) is the advantage function, which

shows how good the action at
i at step t is compared with the ex-

pected return. γ is the discounting factor. At each time step t,
gradients for value loss and policy loss are computed and used to

update the parameters of V and π. In PixelRL, a convolutional

neural network is used to compute V and π; V and π have the

same dimensions as the input image s(t).

A.2. Coloring algorithm
To further explain Eq. 1 in the main text and the coloring pro-

cess of ColorRL, we provide pseudo code for the coloring process

of the agent in Algorithm 1.

Algorithm 1: Agent’s coloring algorithm

input: I: Input image of shape H×W

F : Agents’s network

T : number of coloring steps

C ← Zero-valued array of shape H×W

Cbin ← Zero-valued array of shape H×W×T

t ← 0

while t < T do
action← 2tF(I, Cbin)
for i ← 1 to H do

for j ← 1 to W do
C[i, j] ← C[i, j] + 2taction[i, j]
Cbin[i, j, t] ← action[i, j]

end
end

end
return C

C
on

ca
t: 

H
xW

xC
H

1

R
es

id
ua

l b
lk

 1
:

H
xW

xC
H

1/
2

R
es

id
ua

l b
lk

 2
:

H
xW

xH
C

1/
2

Va
lu

e:
H

xW
x1

Po
lic

y:
H

xW
x2

C
N

N
 3

x3
, s

tri
de

 1
:

H
xW

xC
H

in

C
N

N
 3

x3
, s

tri
de

 1
:

H
xW

xC
H

C
N

N
 3

x3
, s

tri
de

 1
:

H
xW

xC
H

C
N

N
 3

x3
, s

tri
de

 1
:

H
xW

xC
H

Agent's Network Residual Block

Figure 1. Our agent’s network architecture for 2D images (3D ver-

sion is similar). The two input modules are residual blocks (shown

on the right).

A.3. Implementation Details

A.3.1 A3C Implementation

We modified an open source implementation1 so that it can work

with the PixelRL setting. This A3C implementation allows worker

agents to run parallel on graphics processing units (GPUs). Be-

cause in our coloring algorithm, at a step, the reward from the

agent’s current action is as important as future rewards, we let dis-

counting factor γ = 1. A generalized advantage estimation [10]

was also used in the implementation. We set n=T in the n-step

return setting during training.

A.3.2 Agent’s Network Architecture

Our agent’s network for 2D images is shown in Fig. 1. For the

instance segmentation of 2D images, we used the Attention UNet

architecture [7] with five levels of encoding for the core architec-

ture. The number of features are doubled after each level: [32,

64, 128, 256, 512]. For 3D images, we used the original UNet

architecture [9], with the number of features for each layers be-

ing [8, 16, 32, 64, 128]. Input image I and current color map

1https://dgriff777/rl a3c pytorch

1



C(t) are processed by two different residual modules. The two

modules have the same architecture, which is composed of four

CNN layers. The output of the two layers are concatenated before

being processed by the core architecture. During training, the net-

work produce policy map π of shape H×W×2 and value map V
of shape H×W×1 (H×W×D×2 and H×W×D×1, respectively,

for 3D data). We use only the output of policy map π for inference

after the training is finished.

A.4. Additional Ablation Study
We continue the ablation study experiment with only one train-

ing sample and plot the rewards of the agent over the training it-

erations in Fig. 2. As the agent explores for better decisions (bet-

ter sum of all rewards) during early training iterations (iterations

5–10), the merging reward reduces while the splitting reward in-

creases. The behaviors of the rewards function is fully expected

when the agent is affected by the early affluence of RBF . Dur-

ing later iterations (iterations 10–40), both reward components in-

crease together, and reach achieves the highest reward sum. This

experiment suggests that the splitting weight ws should not be less

than the merging weight wm for the agent to quickly get over the

local minimum (like in iterations 0–5).

A.5. Experimental Details

A.5.1 Common Training Details

In this section, we will go over the training details of our agent

and the training details of the compared methods. We also provide

data preparation details and parameter values for each dataset.

ColorRL: We trained our A3C agent with 8 workers on 4

GTX1080 GPUs. The number of coloring steps that the agent per-

form for each data set is determined by the maximum number of

neighbor instances of a single objects. An instance is a neighbor

of another instance if their distance is smaller than a splitting ra-

dius r (e.g. when r1 = 10 and r2 = 20, two instances are each

other’s neighbor if their distance is smaller than 20). If the maxi-

mum number of neighboring objects of an instance is Nb, then we

choose number of coloring steps T such that 2T−1 + 1 ≥ Nb.

For 3D data set, we found that during the first few training it-

erations, overfitting the agent with a single volume will help the

agent learn the full data set better. For the 3D Zebrafish dataset,

we let ColorRL learn to color a single data volume for 300 steps

(for each workers) before it tries to learn on the full dataset. To

reduce the reward calculation time in the datasets of many objects

and large image/volume size such as MoNuSeg and Zebrafish, we

only calculate the rewards and the gradient update for a subset of

the instances for each image/volume. To choose the instances for

rewards calculations, we randomly choose an instance and chose a

third of all the instances that are nearest to the first chosen instance.

We used Adam optimizer to optimizer the network with a learning

rate of 10−4 (first 600k steps for each worker) and 10−5 (last 800k

steps for each worker). For post-processing, after the instances

are separated using a connected component analysis, we remove

the predicted segments that have small area (the best threshold for

small area is chosen using validation set)

Other methods: For a comparison, we used Matterport’s Mask

R-CNN implementation [1]. For each data set, we modified the

anchor scales, the number of maximum instances in the Mask R-

Sc
al

ed
 S

co
re

Training Iteration
Figure 2. Illustration for the changing of scaled values of merging

and splitting rewards over the training iterations.

CNN setting to get the best score on the validation set. As for

ACIS [2] and E2E [8], we used the authors’ implementations23.

Both ACIS and E2E try to find a good order to predicting instances

via the Hungarian matching algorithm. Their methods, however,

consume a large amount of memory and processing time during

training. Due to memory limitations, the maximum number in-

stances per image was set to 90 for the training of E2E. For ACIS,

we attempted to train the agent with different settings. We find that

in order for ACIS to work with large number of objects (above 60),

the number of prediction steps should gradually increases from 5

to 25 during training. With a greater starting value (above 5) or

ending value (above 25) of the prediction step, ACIS will have

trouble learning to perform segmentation. Both ACIS and E2E

have no limitation on the maximum number of predictions dur-

ing inference. For the 3D instance segmentation task, we train a

U-Net model [9] for cell probability map and get the instance la-

beling results using two different methods: connected component

analysis and watershed. With the watershed algorithm, we chose

markers by using inverse distance transform on the cell probability

map and find the local peaks on the maps. The minimum distance

between peaks and maximum number of peaks was chosen so that

the watershed algorithm yields the highest score on the validation

set. With connected component analysis, with the validation set,

we chose the best threshold value that transforms the probability

map to a binary map. Evaluations of our methods and other meth-

ods were done using the same hardware for a fair comparison in

processing measurement. To compute the average processing time

measurement for each image, we measure the time from the time

when an input image is finished loading to the point when the pre-

diction is fully made (post-processing time is computed)

A.5.2 CVPPP

We used the A1 dataset, which consists of 128 labeled images

and 33 testing images. All the images are downsampled to

176 × 176 pixels (the original size is 530 × 530 pixels). Our

2https://github.com/renmengye/rec-attend-public
3https://github.com/visinf/acis

2



Cre-448: 224x224

Cre-256: 224x224

Cre-160: 224x224

CREMI: 1250x1250 

Figure 3. Illustration for preparation of the three datasets: Cre-

160, Cre-256, Cre-448. The name and image size of each dataset

are noted above each image and separated by a colon. Blue arrows

indicate crop and resize.

agent takes downsampled input images and produces output im-

ages of 176 × 176 pixels. We upsampled the prediction results

to the original size (530 × 530 pixels) and then evaluated the test

set. We empirically choose r1 = 12, r2 = 28, wm = 1.0, and

ws = 1.5. The number of color steps T is 6.

A.5.3 KITTI

Table 1. Segmentation quality on KITTI testset. The metrics are

mean weighted (MWCov) and unweighted (MUWCov) coverage,

average false positive (AvgFP), and false negative (AvgFN) rates.

Model MWCov↑ MUCov↑ AvgFP↓ AvgFN↓
DepthOrder [13] 70.9 52.2 0.597 0.736

DenseCRF [12] 74.1 55.2 0.417 0.833

AngleFCN+D [11] 79.7 75.8 0.201 0.159

E2E [8] 80.0 66.9 0.764 0.201

AC-BL-Trunc [2] 72.2 50.7 0.393 0.432

AC-IoU [2] 75.6 57.3 0.338 0.309

ColorRL 77.0 68.5 0.249 0.128

We let our agent perform coloring in 4 steps with r1 = 8,

r2 = 32, ws = 1.5, wm = 1.0. The agent processes images

of size 160×480 (the images are downsampled from the original

size of 256×1024). We use 3712 training images, 144 validation

images, and 120 testing images as in [8]. We also assess the per-

formance of our method on the KITTI car segmentation dataset.

Unlike CVPPP, cars in KITTI have a higher variance in size and

position with noisy and low-quality training labels. Fig. 4, Fig. 5

and Table 1 shows that our agent can generalize well from noisy

labels and is on par with the state of the art while outperforms ex-

Image + Predicted label

Figure 4. Coloring results KITTI test dataset. In this figure, we

show predictions of KITTI after post-processing with connected

component.

isting sequential methods (E2E, AC-BL-Trunc, and AC-IoU). [2]

(AC-BL-Trunc, and AC-IoU) is the most similar method to our

method (they use an actor-critic agent to segment one object at a

time). In E2E, AC-BL-Trunc, and AC-IoU, an object has to dis-

criminate itself from all other objects in the image at a time step.

Therefore, the single-object-per-step scheme requires the neural

network to learn and process a lot of spatial information, making

the segmentation problem more difficult when the size and posi-

tion of objects vary. By letting the agent segment multiple objects

at a time, the difficulty of the segmentation problem is reduced

since each object only has to discriminate itself from the nearby

objects that have the same color.

A.5.4 CREMI

CREMI is an EM image dataset in which many cell objects are

densely packed and have very irregular shapes. From dataset A

of CREMI, which consists of 125 1250×1250 images, we pre-

pared three different datasets: Cre-160, Cre-256, and Cre-448.

We randomly sampled 160×160 patches from the original dataset

for Cre-160 and then resized all the patches to 224×224. We did

the same for Cre-256 and Cre-448 (patches of size 256×256 and

448×448 are sampled respectively). Thus, each dataset has im-

ages of 224×224 but with different scales and average number of

objects per image. Fig. 3 illustrates the generation of the three

datasets. Each dataset has 123 training images and 25 testing im-

ages. We empirically choose r1 = 12, r2 = 24 for Cre-160,

r1 = 12, r2 = 18 for Cre-256, r1 = 8, r2 = 12 for Cre-448, and

T = 6, ws = 1.5 and wm = 1.0 for all the datasets. We show

additional results of Cre-256 in Fig. 6

3



Figure 5. ColorRL’s step-by-step results on KITTI.

C
re

-2
56

GT mrcnnEM image E2E ACISt = 2 t = 4 t = 6

Figure 6. Segmentation results of Cre-256.

MoNuSeg : 500x500

MNSeg-160 : 160x160

MNSeg-224 : 224x224

Figure 7. Illustration for preparation of the two datasets: MNSeg-

160 and MNSeg-224. The name and image size of each dataset

are noted above each image and separated by a colon. Blue arrows

indicate crop.

A.5.5 MoNuSeg

The dataset consists of 30 1000×1000 histopathology images ac-

quired from multiple sites covering diverse nuclear appearances.

The nuclei in MoNuSeg appear sparsely in each image; however,

they are vastly different in size and shape from image to image.

Before we created two versions of the data: MNSeg-160 and

MNSeg-224, we downsampled all 30 images to 500×500. To cre-

ate MNSeg-160, we sampled 600 (100) 160×160 patches from the

EM
 im

ag
es

G
T 

la
be

l

XY-slice YZ-slice ZX-slice

Figure 8. Visulization for XY, YZ, and ZX slice of Zebrafish data.

downsampled images for the training (testing). Likewise, MNSeg-

224 has 600 (100) 224×224 cropped images for trainning (test-

ing). Fig. 7 illustrates the preparation steps for MNSeg-160 and

MNSeg-224. The two versions of the data have the same scale but

with different average number of objects per image and different

image sizes. For both datasets, we chose T = 7, ws = 1,wm = 1,

and r = 10. Due to memory limitations, E2E was trained and

evaluated with a maximum of 90 instances. Therefore, there is not

much difference in E2E’s average inference time between MNSeg-

160 and MNSeg-224.

4



Input volume t = 5 GT

Figure 9. ColorRL’s coloring results at t = 5.

A.5.6 Zebrafish

The larval zebrafish serial-section EM data were captured from a

5.5 day post-fertilization larval zebrafish. This specimen was cut

into 18000 serialsections and collected onto a tape substrate with

an ATUM. A series of images spanning the anterior quarter of the

larval zebrafish was next acquired at a nearly isotropic resolution

of 56.4×56.4× 60 nm3 vx−1 from 16000 sections in the resulting

serial section library using scanning EM [4]. We extracted 120

512×512×512 volumes that were manually labeled. We divided

the 120 volumes into 80 training volumes and 40 testing volumes.

All the volumes are down-sampled to 96×96×96 voxels. Fig. 8

show an example of slices of the 3D zebrafish data. Our agent

processes full volume of 96×96×96 voxels with T = 5, r = 12,

wm = 1.0 and ws = 1.5. Fig. 9 shows our additional results.

References
[1] Waleed Abdulla. Mask R-CNN for object detection and in-

stance segmentation on Keras and TensorFlow. https:
//github.com/matterport/Mask_RCNN, 2017. 2

[2] Nikita Araslanov, Constantin A Rothkopf, and Stefan Roth.

Actor-Critic Instance Segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 8237–8246, 2019. 2, 3

[3] Ryosuke Furuta, Naoto Inoue, and Toshihiko Yamasaki.

Fully convolutional network with multi-step reinforcement

learning for image processing. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages

3598–3605, 2019. 1

[4] David Grant Colburn Hildebrand, Marcelo Cicconet, Rus-

sel Miguel Torres, Woohyuk Choi, Tran Minh Quan, Jung-

min Moon, Arthur Willis Wetzel, Andrew Scott Champion,

Brett Jesse Graham, Owen Randlett, et al. Whole-brain

serial-section electron microscopy in larval zebrafish. Na-
ture, 545(7654):345–349, 2017. 5

[5] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,

Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,

and Koray Kavukcuoglu. Asynchronous methods for deep

reinforcement learning. In International conference on ma-
chine learning, pages 1928–1937, 2016. 1

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-

drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,

Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,

et al. Human-level control through deep reinforcement learn-

ing. Nature, 518(7540):529–533, 2015. 1

[7] Ozan Oktay, Jo Schlemper, Folgoc, et al. Attention U-Net:

Learning where to look for the pancreas. arXiv preprint
arXiv:1804.03999, 2018. 1

[8] Mengye Ren and Richard S Zemel. End-to-end instance seg-

mentation with recurrent attention. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 6656–6664, 2017. 2, 3

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 1, 2

[10] John Schulman, Philipp Moritz, Sergey Levine, Michael Jor-

dan, and Pieter Abbeel. High-dimensional continuous con-

trol using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015. 1

[11] Jonas Uhrig, Marius Cordts, Uwe Franke, and Thomas Brox.

Pixel-level encoding and depth layering for instance-level se-

mantic labeling. In German Conference on Pattern Recogni-
tion, pages 14–25. Springer, 2016. 3

[12] Ziyu Zhang, Sanja Fidler, and Raquel Urtasun. Instance-

level segmentation for autonomous driving with deep

densely connected MRFs. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages

669–677, 2016. 3

[13] Ziyu Zhang, Alexander G Schwing, Sanja Fidler, and Raquel

Urtasun. Monocular object instance segmentation and depth

ordering with CNNs. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 2614–2622,

2015. 3

5


