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1. Video Demonstration

This PDF is accompanied with a video showing advan-

tages of the proposed method compared to state-of-the-art

frame-based methods published over recent months, as well

as potential practical applications of the method.

2. Backbone network architecture

Figure 1: Backbone hourglass network that we use in all

modules of the proposed method.

For all modules in the proposed method, we use the same

backbone architecture which is an hourglass network with

shortcut connections between the contracting and the ex-

panding parts similar to [2] which we show in Fig. 1.

3. Additional Ablation Experiments

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Percentage of locations

Synthesis
Warped successive

Warp preceeding

Figure 2: Percentage of pixels each interpolation method

contributes on average to the final interpolation result for

Vimeo90k (denoising) validation set. Note, that all meth-

ods contribute almost equally to the final result and thus are

equally important.

Importance of inter-frame events. To study the im-

portance of additional information provided by events, we

skip every second frame of the original video and attempt

to reconstruct it using two versions of the proposed method.

One version has access to the events synthesized from the

skipped frame and another version does not have inter-

frame information. As we can see from the Tab. 1, the

Table 1: Importance of inter-frame events on Middlebury

test set. To compute SSIM and PSNR, we skip one frame of

the original video, reconstruct it and compare to the skipped

frame. One version of the proposed method has access to

the events synthesized from the skipped frame and another

version does not have inter-frame information. We also

show performance of frame-based SuperSloMo method [2],

that is used in event simulator for reference. We highlight

the best performing method.

Method PSNR SSIM

With inter-frame events (ours) 33.27±3.11 0.929±0.027

Without inter-frame events 29.03±4.85 0.866±0.111

SuperSloMo [2] 29.75±5.35 0.880±0.112

former significantly outperforms the later by a margin of

4.24dB. Indeed this large improvements can be explained

by the fact that the method with inter-frame events has im-

plicit access to the ground truth image it tries to recon-

struct, albeit in the form of asynchronous events. This high-

lights that our network is able to efficiently decode the asyn-

chronous intermediate events to recover the missing frame.

Moreover, this shows that the addition of events has a sig-

nificant impact on the final task performance, proving the

usefulness of an event camera as an auxiliary sensor.

Importance of each interpolation method. To study

relative importance of synthesis-based and warping-based

interpolation methods, we compute the percentage of pixels

that each method contribute on average to the final interpo-

lation result for the Vimeo90k (denoising) validation dataset

and show the result in Fig. 2. As it is clear from the figure,

all the methods contribute almost equally to the final result

and thus are all equally important.

“Rope” plot. To study how the interpolation quality de-

creases with the distance to the input frames, we skip all but

every 7th frame in the input videos from the High Quality

Frames dataset, restore them using our method and compare

to the original frames. For each skipped frame position, we

compute average PSNR of the restored frame over entire

dataset and show results in Fig. 3. As clear from the fig-

ure, the proposed method has the highest PSNR. Also, its

PSNR decreases much slower than PSNR of the competing

1
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Figure 3: “Rope plot” showing interpolation quality as a

function of distance from input boundary frames on High

Quality Frames dataset. We skip all but every 7th frame and

restore them using events and remaining frames. For each

skip position, we compute average PSNR of the restored

frame over entire dataset. We do not fine-tune the proposed

and competing methods on the HQF dataset and simply use

pre-trained models provided by the authors. Note, that the

proposed method have the highest PSNR. Also, its PSNR

decreases much slower than PSNR of other methods we

move away from the input boundary frames.

methods as we move away from the boundary frames.

4. Additional Benchmarking Results

To makes sure that the fine-tuning does not af-

fect our general conclusions, we fine-tuned the pro-

posed method and RRIN method [4] on subset of

High Quality Frames dataset and test them on the

remaining part (“poster pillar 1”, “slow and fast desk”,

“bike bay hdr” and “desk” sequences). We choose RRIN

method for this experiment, because it showed good perfor-

mance across synthetic and real datasets and it is fairly sim-

ple. As clear from the Tab. 2, after the fine-tuning, perfor-

mance of the proposed method remained very strong com-

pared to the RRIN method.

5. High Speed Events and RGB Dataset

In this section we describe the sequences in the High-

Speed Event and RGB (HS-ERGB) dataset. The commer-

cially available DAVIS 346 [1] already allows the simul-

taneous recording of events and grayscale frames, which

are temporally and spatially synchronized. However, it has

some shortcomings as the relatively low resolution of only

346 × 260 pixels of both frames and events. This is far

below the resolution of typical frame based consumer cam-

eras. Additionally, the DAVIS 346 has a very limited dy-

namic range of 55 db and a maximum frame of 40 FPS.

Those properties render it not ideal for many event based

methods, which aim to outperform traditional frame based

cameras in certain applications. The setup described in [9]

shows improvements in the resolution of frames and dy-

namic range, but has a reduced event resolution instead. The

lack of publicly available high resolution event and color

frame datasets and of the shelf hardware motivated the de-

velopment of our dual camera setup. It features high reso-

lution, high frame rate, high dynamic range color frames

combined with high resolution events. A comparison of

our setup with the DAVIS346[1] and the setup with beam

splitter in [9] is shown in 3. With this new setup we col-

lect new High Speed Events and RGB (HS-ERGB) Dataset

that we summarize in Tab. 4. We show several fragments

from the dataset in Fig. 5. In the following paragraphs we

describe temporal synchronization and spatial alignment of

frame and event data that we performed for our dataset.

Synchronization In our setup, two cameras are hard-

ware synchronized through the use of external triggers.

Each time the standard camera starts and ends exposure, a

trigger is sent to the event camera which records an exter-

nal trigger event with precise timestamp information. This

information allows us to assign accurate timestamps to the

standard frames, as well as group events during exposure or

between consecutive frames.

Alignment In our setup event and RGB cameras are ar-

ranged in stereo configuration, therefore event and frame

data in addition to temporal, require spatial alignment. We

perform the alignment in three steps: (i) stereo calibration,

(ii) rectification and (iii) feature-based global alignment.

We first calibrate the cameras using a standard checker-

board pattern. The recorded asynchronous events are con-

verted to temporally aligned video reconstructions using

E2VID[6, 7]. Finally, we find the intrinsic and extrinsics by

applying the stereo calibration tool Kalibr[3] to the video re-

constructions and the standard frames recorded by the color

camera. We then use the found intrinsics and extrinsics to

rectify the events and frames.

Due to the small baseline and similar fields of view

(FoV), stereo rectification is usually sufficient to align the

output of both sensors for scenes with a large average depth

(>40m). This is illustrated in Fig. 4 (a).

For close scenes, however, events and frames are mis-

aligned (Fig. 4 (b)). For this reason we perform the sec-

ond step of global alignment using a homography which

we estimate by matching SIFT features [5] extracted on the

standard frames and video reconstructions. The homog-

raphy estimation also utilizes RANSAC to eliminate false

matches. When the cameras are static, and the objects of

interest move within a plane, this yields accurate alignment

between the two sensors (Fig.4 (c)).
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Table 2: Results on High Quality Frames [8] with fine-tuning. Due to the time limitations, we only fine-tuned the pro-

posed method and RRIN [4] method, that performed well across synthetic and real datasets. For evaluation, we used

“poster pillar 1”, “slow and fast desk”, “bike bay hdr” and “desk” sequences of the set and other sequences we used for

the fine-tuning. For SSIM and PSNR, we show mean and one standard deviation across frames of all sequences.

Method
1 skip 3 skips

PSNR SSIM PSNR SSIM

RRIN [4] 28.62±5.51 0.839±0.132 25.36±5.70 0.750±0.173

Time Lens (Ours) 33.42±3.18 0.934±0.041 32.27±3.44 0.917±0.054

Table 3: Comparison of our HS-ERGB dataset against publicly available High Quality Frames (HQF) dataset, acquired by

DAVIS 346 [1] and Guided Event Filtering (GEF) dataset, acquired by setup with DAVIS240 and RGB camera mounted

with beam splitter [9]. Note, that in contrast to the previous datasets, the proposed dataset has high resolution of event data,

and high frame rate. Also, it is the first dataset acquired by dual system with event and frame sensors arranged in stereo

configuration.

Frames Events

FPS Dynamic Range, [dB] Resolution Color Dynamic Range, dB Resolution Sync. Aligned

DAVIS 346 [1] 40 55 346 × 260 ✘ 120 346 × 260 ✔ ✔

GEF[9] 35 60 2480 × 2048 ✔ 120 240 × 180 ✔ ✔

HS-ERGB (Ours) 226 71.45 1440 × 1080 ✔ 120 720 × 1280 ✔ ✔

(a) far away scenes (b) misaligned close scenes (c) after global alignment

Figure 4: Alignment of standard frames with events. Aggregated events (blue positive, red negative) are overlain with the

standard frame. For scenes with sufficient depth (more than 40m) stereo rectification of both outputs yields accurate per-pixel

alignment (a). However, for close scenes (b) events and frames are misaligned. In the absence of camera motion and motion

in a plane, the views can be aligned with a global homography (c).

3
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Table 4: Overview of all sequences of the High Speed Event-RGB (HS-ERGB) dataset.

Sequence Name Subset Camera Settings Description

Close planar sequences

Water bomb air (Fig. 5a)

Train

163 FPS, 1080 µs exposure, 1065 frames accelerating object, water splash

Lighting match 150 FPS, 2972 µs exposure, 666 frames illumination change, fire

Fountain Schaffhauserplatz 1 150 FPS, 977 µs exposure, 1038 frames illumination change, fire

Water bomb ETH 2 (Fig. 5c) 163 FPS, 323 µs exposure, 3494 frames accelerating object, water splash

Waving arms 163 FPS, 3476 µs exposure, 762 frames non-linear motion

Popping air balloon

Test

150 FPS, 2972 µs exposure, 335 frames non-linear motion, object disappearance

Confetti (Fig. 5e 150 FPS, 2972 µs exposure, 832 frames non-linear motion, periodic motion

Spinning plate 150 FPS, 2971 µs exposure, 1789 frames non-linear motion, periodic motion

Spinning umbrella 163 FPS, 3479 µs exposure, 763 frames non-linear motion

Water bomb floor 1 (Fig. 5d) 160 FPS, 628 µs exposure, 686 frames accelerating object, water splash

Fountain Schaffhauserplatz 2 150 FPS, 977 µs exposure, 1205 frames non-linear motion, water

Fountain Bellevue 2 (Fig. 5b) 160 FPS, 480 µs exposure, 1329 frames non-linear motion, water, periodic movement

Water bomb ETH 1 163 FPS, 323 µs exposure, 3700 frames accelerating object, water splash

Candle (Fig. 5f) 160 FPS, 478 µs exposure, 804 frames illumination change, non-linear motion

Far-away sequences

Kornhausbruecke letten x 1

Train

163 FPS, 266 µs exposure, 831 frames fast camera rotation around z-axis

Kornhausbruecke rot x 5 163 FPS, 266 µs exposure, 834 frames fast camera rotation around x-axis

Kornhausbruecke rot x 6 163 FPS, 266 µs exposure, 834 frames fast camera rotation around x-axis

Kornhausbruecke rot y 3 163 FPS, 266 µs exposure, 833 frames fast camera rotation around y-axis

Kornhausbruecke rot y 4 163 FPS, 266 µs exposure, 833 frames fast camera rotation around y-axis

Kornhausbruecke rot z 1 163 FPS, 266 µs exposure, 857 frames fast camera rotation around z-axis

Kornhausbruecke rot z 2 163 FPS, 266 µs exposure, 833 frames fast camera rotation around z-axis

Sihl 4 163 FPS, 426 µs exposure, 833 frames fast camera rotation around z-axis

Tree 3 163 FPS, 978 µs exposure, 832 frames camera rotation around z-axis

Lake 4 163 FPS, 334 µs exposure, 833 frames camera rotation around z-axis

Lake 5 163 FPS, 275 µs exposure, 833 frames camera rotation around z-axis

Lake 7 163 FPS, 274 µs exposure, 833 frames camera rotation around z-axis

Lake 8 163 FPS, 274 µs exposure, 832 frames camera rotation around z-axis

Lake 9 163 FPS, 274 µs exposure, 832 frames camera rotation around z-axis

Bridge lake 4 163 FPS, 236 µs exposure, 836 frames camera rotation around z-axis

Bridge lake 5 163 FPS, 236 µs exposure, 834 frames camera rotation around z-axis

Bridge lake 6 163 FPS, 235 µs exposure, 832 frames camera rotation around z-axis

Bridge lake 7 163 FPS, 235 µs exposure, 832 frames camera rotation around z-axis

Bridge lake 8 163 FPS, 235 µs exposure, 834 frames camera rotation around z-axis

Kornhausbruecke letten random 4

Test

163 FPS, 266 µs exposure, 834 frames random camera movement

Sihl 03 163 FPS, 426 µs exposure, 834 frames camera rotation around z-axis

Lake 01 163 FPS, 335 µs exposure, 784 frames camera rotation around z-axis

Lake 03 163 FPS, 334 µs exposure, 833 frames camera rotation around z-axis

Bridge lake 1 163 FPS, 237 µs exposure, 833 frames camera rotation around z-axis

Bridge lake 3 163 FPS, 236 µs exposure, 834 frames camera rotation around z-axis
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(a) Water bomb air (b) Fountain Bellevue

(c) Water bomb ETH 2 (d) Water bomb floor 1

(e) Confetti (f) Candle

Figure 5: Example sequences of the HS-ERGB dataset. This figure contains animation that can be viewed in Acrobat Reader.
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