
Uncertainty-Aware Camera Pose Estimation from Points and Lines:
Supplementary Materials

Alexander Vakhitov1 Luis Ferraz Colomina2 Antonio Agudo3 Francesc Moreno-Noguer3
1SLAMCore Ltd., UK

2Kognia Sports Intelligence, Spain
3Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Spain

1. Introduction
In the following supplementary materials, we describes

results of the additional experiments, including more data
on a real experiment for points and lines described in the
main paper, and some additional baseline comparisons in
a synthetic setup; also, we give theoretical details on the
methods. Please also consider the MATLAB code for the
synthetic experiments, and a video, shortly described next.

2. Video description
The video show the first 200 frames of the KITTI 01 se-

quence. We run RANSAC, then inlier filtering, then a solver
(either a standard DLS or a proposed DLSU), and standard
pose refinement. We plot the detections considered as inlier
ones by RANSAC, as well as the projections of the features
considered as inliers by the methods. Comparing the ini-
tial inlier detections and the projections of the inliers after
the inlier filtering, one can see that the proposed method
has better alignment between the projected and the detected
features. For some frames, it selects the feature sets which
are more diverse in terms of point depth, often choosing the
features which were not present in the original inlier set.
See Table 3 for some examples.

3. Details of Methods
In this part, we will describe additional theoretical details

behind the proposed methods.

3.1. EPnPU

In the following section, we outline the uncertainty-
aware PCA procedure we use in this method. Recall, that
we use an isotropic approximation to the point uncertainty
ΣXi

= σ2
i I.

1. The covariance-weighted mean point. As long as the
mean point is the point with minimal sum of distances
to the points, we modify this definition to use point

covariances:

x̄ = argminX

npt∑
i=1

σ−2
i ‖xi − x‖2, (1)

x̄ =
1∑npt

i=1 σ
−2
i

npt∑
j=1

σ−2
j xi, (2)

and the covariance σ2
x̄I of x̄ is

σ2
x̄ =

1∑npt

i=1 σ
−2
i

. (3)

2. Compute the covariances σ2
x̄i
I for the centered points

x̄i = xi − x. According to the definition,

σ2
x̄i

= cov

xi −
1∑npt

i=1 σ
−2
i

npt∑
j=1

σ−2
j xi

 , (4)

and transforming this, we get

σ2
x̄i

= 1 + σ2
i −

2∑npt

i=1 σ
−2
i

. (5)

3. The jth principal direction is a solution to the follow-
ing covariance-weighted problem:

zj = argmax
npt∑
i=1

σ−2
x̄i

(
x̄T
i zj
)2
, (6)

subject to zTj zi = 0, i = 1, . . . , j − 1; ‖zj‖ = 1,
which follows from computing the covariance of the
residuals cov

(
x̄T
i zj
)

= σ−2
x̄i

, as explained in the pa-
per.

Next, we move to describing the details of the computations
for the DLSU method.

1

 10 30 50 70 90 110
Number of Points

0.0

0.5

1.0

R
ot

at
io

n
E

rr
or

 (
de

gr
ee

s) Mean Rotation

 10 30 50 70 90 110
Number of Points

0.0

0.5

1.0

R
ot

at
io

n
E

rr
or

 (
de

gr
ee

s) Median Rotation

 10 30 50 70 90 110
Number of Points

0.0

0.2

0.4

T
ra

ns
la

tio
n

E
rr

or
 (

%
) Mean Translation

 10 30 50 70 90 110
Number of Points

 0.0

 5.0

10.0

15.0

C
os

t (
m

s)

Mean Cost

DLS
DLS-A

Figure 1. Pose errors and running times in a synthetic experiment with 2D noise, same conditions as in the main paper, Figure 3, top row.
We compare the original DLS and the algebraic DLS-A based on algebraic distance. The latter is much faster, and the former gives slight
benefits in mean errors for small point counts.

 30 50 70 90 110
Number of Points

1.5

2.0

2.5

R
ot

at
io

n
E

rr
or

 (
de

gr
ee

s) Mean Rotation

 30 50 70 90 110
Number of Points

1.5

2.0

2.5

R
ot

at
io

n
E

rr
or

 (
de

gr
ee

s) Median Rotation

 30 50 70 90 110
Number of Points

1.0

1.5

2.0

T
ra

ns
la

tio
n

E
rr

or
 (

%
) Mean Translation

 30 50 70 90 110
Number of Points

 0.0

 5.0

10.0

15.0

C
os

t (
m

s)

Mean Cost

P3P
P3P+FURef

EPnP+GN
EPnP+GN+FURef

EPnPU
EPnPU+FURef

Figure 2. Pose errors and running times in a synthetic experiment with 2D+3D noise, same conditions as in the main paper, Figure 3,
central row. We compare the uncertain and the full uncertain refinement methods (+FURef) for the pipelines based on P3P, EPnP+GN and
proposed EPnPU solvers. Full uncertain refinement has highly similar accuracy to the uncertain refinement.

3.2. DLSU

In the following text, we give the detailed step-by-step
formulas for the DLSU method. After formulating the cost
as given in the main paper, we set the gradient of the cost
by t equal 0 and express the translation through the rotation
parameters

t = −T−1Avec(R(s)), (7)

where T =
∑nk

i=1 T
T
k Σ−1

rk
Tk, A =

∑nk

i=1 T
T
k Σ−1

rk
Ak.

The gradient of the cost by the rotation rotation parame-
ters is set to be equal zero as well

ATk Σ−1
rk

(Ak − TkT
−1A)vec(R(s))∇svec(R(s)) = 0. (8)

As long as the equations are homogeneous with respect to
the vectorized rotation vec(R(s)), we multiply them by 1 +
‖s‖2 following the original DLS approach. We get a 3rd-
order polynomial system with three unknown components
of s. We solve it with a generated Groebner solver, and
compute t using (7).

3.3. Covariance-aware line triangulation

While line representation with the 3D endpoints is
clearly non-minimal, because the domain of lines in 3D is
4-dimensional, but two 3D endpoints together give a dimen-
sion of 6, the endpoint-based parameterization is still used
in practice.

We assume that we are given the camera poses Ri, ti,
i = 1, . . . , Nl, and the line segments detected in the corre-
sponding images, defined by the pairs (xs

i ,x
e
i) of the end-

points in the image plane. We propose to constrain the
3D endpoints to project to the detected segment endpoints
on the first image. For the other images, the projections
of the endpoints should belong to the detected lines, not
necessarily projecting to the 2D endpoints. This way, the
endpoints would encode the spatial location of the detected
segment better. We use the following cost for line triangula-
tion, which is a sum of 2D covariance-weighted point-based
residuals for the first camera, and line-based residuals for
the other cameras: Lln(P,Q) =

‖r̄ptxs
1
(p)‖2Σxs

1

+ ‖r̄ptxe
1
(q)‖2Σxe

1

+

Nl∑
i=2

‖r̄lni (p,q)‖2Σl,i
, (9)

where we denote the point projection residuals rptxs
1
(p) =

rptxs
1
(p, R1, t1) and rptxe

1
(q) = r1

xe
1
(q, R1, t1), as given in

(19), main paper, and r̄lni (p,q) = r̄lni (p,q, Ri, ti), as given
in (2), main paper.

We find p,q using Levenberg-Marquardt-based opti-
mization of Lln(p,q), initializing with the result of the
DLT-based line triangulation as explained in [3].

For the error propagation, we follow a general scheme,

2

Points Points + 2D Uncertainty Points + Full Uncertainty, Proposed
P3P [5] EPnP [6] DLS [4] OPnP [10] CEPPnP [1] MLPnP [8] EPnPU* EPnPU DLSU* DLSU
erot etrans erot etrans erot etrans erot etrans erot etrans erot etrans erot etrans erot etrans erot etrans erot etrans

KITTI [2], sequences 00-02
N 3.6 17.3 1.4 9.8 1.3 7.1 1.3 7.1 3.1 17.9 1.0 4.7 1.2 8.3 1.7 7.9 1.3 7.9 1.5 6.2
S 0.9 4.7 0.9 4.3 0.9 4.2 0.9 4.2 1.0 5.2 0.9 4.2 0.9 4.2 0.9 4.3 0.9 4.2 0.9 4.1
U 0.9 4.7 0.8 4.5 0.8 4.4 0.8 4.4 0.9 5.0 0.8 4.5 0.8 4.5 0.8 4.5 0.8 4.4 0.8 4.4

TUM [7], ’freiburg1’ sequences
N 13.3 2.7 9.1 1.2 8.9 1.1 8.9 1.1 9.1 1.2 8.7 1.0 8.9 1.0 8.9 1.1 8.8 1.0 8.7 1.0
S 8.6 1.0 8.6 0.9 8.6 0.9 8.6 0.9 8.6 0.9 8.6 0.9 8.6 0.9 8.5 0.9 8.5 0.9 8.5 0.9
U 8.6 0.9 8.5 0.9 8.6 0.9 8.6 0.9 8.6 0.9 8.6 0.9 8.5 0.9 8.5 0.9 8.5 0.9 8.5 0.9

Table 1. Motion estimation from 2D-3D point correspondences on KITTI [2] TUM [7] in terms of median absolute rotation
erot (in 0.1×deg.) and translation etrans (in cm.) errors. We compare proposed full uncertainty-aware methods against point-
based PnP and 2D uncertainty-aware methods in isolation (N), with standard (S) and proposed uncertain (U) refinement.
Methods with ’*’ receive a pose from RANSAC, best for the dataset is in bold italic, best for each protocol (N,S or U) is in
bold. The new methods outperform the baselines in most metrics.

e.g. [3], Chapter 5, getting

Σp,q = (JT (p,q)J(p,q))−1, (10)

where J(p,q) denotes the Jacobian of the inverse
covariance-weighted residuals. We obtain Σp as a left-
upper 3× 3 block of Σp,q, and Σq as the right-lower 3× 3
block of the same matrix, which is an approximation in-
deed, motivated in the main paper by the simplicity of the
formulation and the efficiency of computations.

4. Additional experiments
In this section, we give additional experimental results.

4.1. Median errors for points

In Table 1 we present the median errors for the real ex-
periment on KITTI and TUM described in the main pa-
per. While the proposed methods mostly outperform the
competitive methods, the gap in terms of median errors is
smaller compared to the gap in mean errors. While MLPnP
excels in isolation on KITTI, it has much higher runtime
because it runs reprojection cost refinement inside, while
other solvers do not.

4.2. Full results on lines

Due to limited space in the main paper, we present here
the results for the points + lines pipeline on TUM and KITTI
datasets, same sequences as for the points in the main paper,
see Table 2. The proposed solvers outperform the baselines
in translation errors on both datasets. On TUM, the media
rotation errors are similar for all tested methods, while on
KITTI the proposed solvers have better rotation accuracy.

4.3. DLS Modifications

We compare the original object space error-based DLS
solver [4] and our modification, DLS-A, which uses the al-
gebraic error. We get DLS-A from the DLSU solver by

providing it with unit matrices as residual covariances. See
Figure 1 for the results. The proposed DLS-A is 2-3 times
faster depending on a point number, but also is slightly infe-
rior for the low number of points with respect to the original
DLS method.

4.4. Refinement modifications

In this section, we compare the full uncertain and the
proposed uncertain refinement methods, as described in
Section 3.5 of the main paper. Full uncertain refinement
is implemented using finite-difference approximation of the
Jacobian and based on MATLAB lsqnonlin function, im-
plementing a Levenberg-Marquardt method, while uncer-
tain refinement is implemented as Gauss-Newtwon itera-
tions, with additional iterative re-computation of the resid-
ual covariances. The experiment is run following the set-
ting of the main paper (2D noise + 3D noise, central row
of the Figure 3, main paper). We compare a pipelines with
P3P, EPnP+GN and proposed EPnPU solvers. The results
in Figure 2 suggest, that there are no major differences in
accuracy of the methods.

References
[1] L. Ferraz, X. Binefa, and F. Moreno-Noguer. Leveraging

feature uncertainty in the PnP problem. In Proceedings of
the BMVC 2014 British Machine Vision Conference, pages
1–13, 2014. 3

[2] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for
autonomous driving? the KITTI vision benchmark suite.
In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3354–3361. IEEE, 2012. 3, 4

[3] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003. 2, 3

[4] J. A. Hesch and S. I. Roumeliotis. A direct least-squares
(DLS) method for PnP. In Computer Vision (ICCV), 2011
IEEE International Conference on, pages 383–390. IEEE,
2011. 3

3

Points+Lines Points+Lines+Uncertainty
EPnPL [9] OPnPL [9] DLSLU* EPnPLU*
erot etrans erot etrans erot etrans erot etrans

KITTI [2], sequences 00-02

m
ea

n N 2.65 40.26 9.54 727.26 5.88 17.34 2.73 20.25
S 1.74 12.77 7.93 344.78 5.19 13.86 1.73 9.71

m
ed

. N 1.52 15.75 1.46 7.98 1.49 6.41 1.71 8.37
S 0.89 4.87 0.86 4.20 0.84 4.04 0.85 4.21

TUM [7], sequences ’freiburg1’
m

ea
n N 11.73 1.85 10.74 1.52 9.84 1.24 12.27 1.59

S 11.13 1.38 10.43 1.29 9.77 1.18 11.88 1.39

m
ed

. N 9.06 1.26 8.93 1.12 8.73 0.93 8.87 1.06
S 8.64 0.92 8.58 0.92 8.58 0.92 8.58 0.91

Table 2. Motion estimation from 2D-3D point and line correspondences
on KITTI [2] sequences 00-02 and TUM [7], ’freiburg1’ sequences. We
report the rotation errors in 0.1×degrees and translation errors in cm, for
the solvers in isolation (N) and after standard refinement (S). The pro-
posed uncertainty-aware solvers outperform the uncertainty-free base-
lines OPnPL and EPnPL in most metrics on KITTI and in mean metrics
on TUM. Median rotation errors on TUM are similar, but the proposed
solvers benefit from lower median translation errors.

[5] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel
parametrization of the perspective-three-point problem for a
direct computation of absolute camera position and orienta-
tion. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 2969–2976. IEEE, 2011. 3

[6] V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An accurate
O(n) solution to the PnP problem. International Journal of
Computer Vision, 81(2):155–166, 2009. 3

[7] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of RGB-D SLAM sys-
tems. In Proc. of the International Conference on Intelligent
Robot Systems (IROS), Oct. 2012. 3, 4

[8] S. Urban, J. Leitloff, and S. Hinz. Mlpnp - a real-time maxi-
mum likelihood solution to the perspective-n-point problem.
ISPRS Annals of Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, III-3:131–138, 2016. 3

[9] A. Vakhitov, J. Funke, and F. Moreno-Noguer. Accurate
and linear time pose estimation from points and lines. In
European Conference on Computer Vision, pages 583–599.
Springer, 2016. 4

[10] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Oku-
tomi. Revisiting the PnP problem: a fast, general and optimal
solution. In Computer Vision (ICCV), 2013 IEEE Interna-
tional Conference on, pages 2344–2351. IEEE, 2013. 3

4

Image ∆etrans, cm.

28

78

14.1

4.0

-2.4

Table 3. We compare the DLS and DLSU filtered inlier sets reprojected onto the images, and also plot the initially estimated inlier
detections. In the right column, see the improvement of absolute error by DLSU as compared to DLS, after the standard refinement. The
inlier projections of DLSU are more aligned with the detections; DLSU selects closer features more often.5

