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In this supplementary material, we provide additional
experimental results that support the novelty of the contri-
butions made and evaluate our architectural design choices.
Particularly, we first provide further details regarding the data
collection methodology of our Multimodal Audio-Visual De-
tection (MAVD) dataset in Sec. 1. We then compare the
performance of different EfficientDet variants in our pro-
posed MM-DistillNet framework in Sec. 2.1. In Sec. 2.2,
we evaluate the performance of our framework with sound
from a varying number of microphones as input. Subse-
quently, we demonstrate the capabilities of our multi-teacher
single-student framework to distill knowledge from RGB im-
ages into other modalities that are complementary to sound
in Sec. 2.3. We then present ablation studies on the in-
fluence of various hyperparameters in our proposed MTA
loss function in Sec. 2.4 and we compare the performance
of our MTA loss with other widely employed knowledge
distillation losses in Sec. 2.5. Subsequently, we present
additional results on our proposed self-supervised pretext
task for the audio student in Sec. 3. Then, we present re-
sults of our framework in low illumination conditions such
as nighttime and dusk in Sec. 4. Finally, we extend our
qualitative results with numerous examples in Sec. 5. We
made the code and models of our approach publicly avail-
ableathttp://rl.uni-freiburg.de/research/
multimodal-distill.

1. MAVD Dataset

Our approach employs four different synchronized modal-
ities, including three visual: depth, thermal and RGB, and ad-
ditional sound. We collected our MAVD dataset using a car
with a rack of sensors mounted on the roof as shown in Fig. 1.
Stereo images were captured using a pair of FLIR Black-
fly 23S3C configured to a resolution of 1920 x 650 pixels
and the thermal images were captured at the same resolution
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Figure 1. Top: The data collection vehicle that we use for our
MAVD dataset. Bottom: Closeup view showing the 8-microphone
array, stereo cameras and thermal cameras mounted on the roof
of the vehicle. The vehicle also contains LiDAR, IMU and GPS,
which we also collected for our dataset.

using a pair of FLIR ADK cameras. We employ a target-
less calibration method [8] for aligning the camera images
by formulating a misalignment minimization problem. The
miss-alignment is computed as the difference between the
gradients of the calibrated RGB image and the transformed
thermal image, in the RGB coordinate frame. However, due


http://rl.uni-freiburg.de/research/multimodal-distill
http://rl.uni-freiburg.de/research/multimodal-distill

to the high dimensional nature of this problem, there are
ambiguities that cannot be easily resolved without prior in-
formation. To this end, the method from [8] resolves these
ambiguities through a pre-calibration of the camera intrinsics
by a pre-processing that align predominant edges of objects
that are common to the RGB and thermal cameras.

We employ a stereo rectification and undistor-
tion method with radtan distortion coefficients of
(-0.20077378832448342,  0.06858744821624758, -
8.318933053823812¢-05, 0.0006149164090634826)
and camera intrinsics of (1010.5596834500378,
1010.1723409131672, 975.7863331505446,
297.2804298854754).  Every RGB and thermal im-
age pair in our dataset is GPS clock synchronized with
nano-second precision. The same clock timestamp is used to
identify the central audio frame corresponding to the thermal
and RGB images. We then identify the frame number in the
audio clip using a sampling rate of 44 100 Hz, and sample
1 second around the RGB-thermal timestamp. In order
to obtain the depth image, we use the network proposed
by Zhang et al. [10] with the left and right images from
the stereo rig. We set the maximum disparity to 192 and
apply a jet color map to leverage the ImageNet pre-trained
weights for initializing the EfficientDet backbone. We
made our dataset publicly available at http://rl.uni-
freiburg.de/research/multimodal-distill.

2. Extended Ablation Study
2.1. EfficientDet Compound Coefficient Selection

EfficientDet is a family of object detection models pro-
posed by Tan ef al. [7] which contains eight different ar-
chitectural configurations that trade-off performance and
runtime. We evaluated the performance of the variants to
identify their suitability for our framework. To this end, we
created a large dataset by combining Microsoft COCO [5],
PASCAL VOC [2], and ImageNet [1]. Subsequently, we re-
moved all the scenes that do not contain at least one vehicle
and retained the bounding boxes of those that contain cars
or moving vehicles. We then trained EfficientDet DO-D7 to
detect the objects in this combined dataset. In Tab. 1, we
present the performance in terms of the Average Precision
(AP) at IoU = 0.5, as well as the inference time and the
Floating Point Operations Per Second (FLOPS). We chose
EfficientDet D2 as the backbone of our framework, given that
it presents a higher improvement in the average performance
with a lesser increase in the inference time. Nevertheless,
our framework provides the flexibility to adopt any of the
other variants as a direct drop in replacement.

2.2. Influence of Number of Microphones

Our proposed MM-DistillNet framework exploits comple-
mentary cues from different modalities such as RGB, depth,

EfficientDet AP@ FLOPS Inference
Variant 0.5 Time (ms)
DO 0.5165 2.5B 30.04

Dl 0.6870 6.1B 34.76

D2 0.7974 11B 39.99

D3 0.8134 25B 59.45

D4 0.8680 55B 89.93

D7 0.9200 325B 388.90

Table 1. Performance comparison of different EfficientDet variants
for predicting bounding boxes of vehicles in Microsoft COCO [5],
PASCAL VOC [2], and ImageNet [1], with the associated AP at
0.5 IoU.
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Figure 2. The left axis (blue line) shows the performance of the
network vs the number of microphones. The right axis (red) shows
the GLOPS increase caused by using N microphones. It can be
seen, that more channels improve the performance in the given task
with negligible impact in FLOPS.

and thermal images during training to incorporate multi-
modal information into a single audio network. The input to
the audio network is from a microphone array that captures
ambient sounds. We employ multiple monophonic micro-
phones due to the promising results that it has demonstrated
for sound source localization [6]. Fig. 1 shows the micro-
phone array that we employ mounted on our data collection
vehicle. In order to estimate the number of microphones
that are essential to reliably localize objects, we analyze the
performance of our MM-DistillNet for varying number of
microphones in a balanced subset of the dataset.

Namely, we hypothesize that there is a relationship be-
tween the number of microphones and the complexity of
the scene, as measured by the number of vehicles in the
environment. Our MAVD dataset contains varying number
of vehicles in each scene, with a maximum of 13 vehicles
in a single scene. We performed experiments to analyze the
improvement that we can achieve by using more number
of microphones in the array. To do so, we need to have
balanced number of vehicles in the dataset. Therefore, we
apply an under-sampling approach to ensure that the number
of examples with varying number of vehicles are balanced.


http://rl.uni-freiburg.de/research/multimodal-distill
http://rl.uni-freiburg.de/research/multimodal-distill

Teachers Student ‘ mAP@ Avg
RGB Sound 57.25
RGB Thermal 56.70
RGB, Depth, Thermal  Sound 61.62
RGB, Depth, Thermal ~RGB 81.12
RGB, Depth, Thermal = Thermal 81.98

Table 2. Our framework distills the knowledge from multimodal
teachers trained on dataset where supervision is available, to im-
prove the learning of a single student network. Thermal and RGB
modalities show significant improvement over their single teacher
counterparts.

We compute the performance of the audio student using mul-
tiples of two number of microphones, in order to always
consider the microphones that are further away from each
other in the hexagonal array.

Fig. 2 shows that increasing the number of microphones
consistently improves the performance of the model. There-
fore, we utilize sound from all the eight monophonic mi-
crophones that are available in our octagonal setup for our
experiments. Nevertheless, given that each microphone adds
an additional 768 x 768 x 1 input to the network, we com-
puted the additional overhead in terms of the increase in
number FLOPS in the network. Fig. 2 shows that the in-
crease in FLOPS in the network due to the addition of a
microphone is negligible compared to the overall FLOPS of
EfficientDet as shown in Tab. 1.

2.3. Distillation to Different Student Modalities

By taking advantage of the co-ocurrence of all the modal-
ities present in our dataset (audio, RGB, thermal and depth),
it is straightforward to interchange the input modality of the
student network from audio to any of the other modalities
as described in Sec. 3 of the main paper. By doing so, we
can exemplify not only how our method is modality indepen-
dent, but also how it can further improve the performance of
existing object detection frameworks.

In the other experiments, we selected RGB, depth, and
thermal images as the teacher modalities and sound as the
student modality for our framework. This enables us to
tackle limitations of visual modalities such as occlusions and
sensor sensitivity (poor performance of RGB cameras during
nighttime as well as the limited sensitivity of thermal cam-
eras during the day). Nevertheless, our approach to transfer
the knowledge from multiple pre-trained modality-specific
networks to a student network, is input agnostic. Under
this perspective, instead of employing sound as input to the
student network, we can also use conventional RGB, depth,
or thermal modalities as input to our framework. Tab. 2
presents results with different modalities as input to the stu-
dent network. It can be seen that the performance against
the single teacher is substantially improved. Particularly,

using the thermal modality as input to the student network
provides the best performance, as it provides substantial cues
for vehicle detection in both day as well as night recordings.
Whereas, using RGB as input to the student during night
suffers due to low illumination conditions. Nevertheless,
using a thermal modality requires expensive hardware and is
subject to visual limitations like occlusion. For this reason,
we employ audio in our MM-DistillNet as an alternative to
the traditional visual inputs used in autonomous driving.

2.4. Influence of Hyperparameters in MTA Loss

We define our proposed Multi-Teacher Alignment (MTA)
loss function as
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and multi-teacher attention maps respectively. Additionally,
while computing the KLg;, as a measure of the difference
between probability distributions between the teachers and
the student, we can apply a temperature ¢ to the softmax
as proposed by Hinton ef al. [4]. This temperature in the
softmax computation is added to adapt the confidence on
each individual probability distribution. To this end, we
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We employ this loss in addition to the focal loss Locq to
optimize our MM-DistillNet framework as

Liotar = 0 * Lfocal + @ *Lyrta. 3)

With this formulation, we have two hyperparameters in
the MTA loss function that can be selected according to the
specific task: the exponential value r, which controls the rel-
evance of small valued activations in contrast to large valued
activations, and the softmax temperature r. We performed
experiments to study the influence of these two hyperpa-
rameters on the performance of the audio student network.
Results from this experiment is shown in Tab. 3. We present
the mean average precision of our best recipe using a single
RGB teacher and the audio student network.

We observe that in this setting, a value of r = 4 and
t =9 provides the best result. This suggests that putting
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Table 3. Ablation study of hyperparameters r and temperature ¢ in
the proposed MTA loss function. The object detection performance
is shown for an audio student with knowledge distilled from a RGB
teacher network.

Input ‘ mAP@ Avg
| Ranking Loss [3] | MTA Loss (Ours)
RGB 56.37 57.25
Thermal 55.82 56.70
Depth 45.85 55.41

Table 4. Our MTA loss function was formulated to distill knowledge
from multiple teachers to a single student. Nevertheless, it yields
superior performance than Ranking loss employed by Gan et al. [3]
for knowledge distillation in a single teacher-student scenario.

more importance to higher valued activations rather than
low-valued activations improves the overall performance of
the network.

2.5. Ranking Loss vs. MTA Loss

The proposed MM-DistillNet framework exploits the co-
occurrence of different modalities representing a scene. Our
MTA loss facilitates this process by aligning the intermedi-
ate representations of multiple teachers to that of a single
student. The previous state-of-the-art [3] method employs
the Ranking loss to distill knowledge from a single teacher to
a single student network. To further demonstrate the capabil-
ities of our proposed MTA loss, we compare its performance
with Ranking loss for distillation of knowledge from a single
modality-specific teacher to an audio student network. We
performed this experiment for all the teacher modalities con-
sidered in this work. Although our loss function is designed
to align different intermediate representations of modality-
specific networks, we observe that it outperforms the Rank-
ing loss formulation even in the single teacher setting.

3. Evaluation of Audio Student Pretext Task

Our MM-DistillNet contains multiple modality-specific
teachers and a single student network. Each of the networks
are composed of the EfficientNet backbone which has to be
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Figure 3. Comparison of training convergence of our MM-
DistillNet, with and without the initialization of the student network
with weights of the model trained on our proposed self-supervised
pretext task.

initialized with pre-trained weights from large datasets to
ease the optimization and achieve better convergence. Since
all existing pre-trained models of EfficientNet primarily em-
ploy 3-channel RGB images as input, they cannot be used for
initializing the audio student network which takes 8-channel
spectrograms as input (1-channel spectrogram from each of
the 8 microphones in the array). To address this problem,
we propose a self-supervised pretext task that provides the
audio student network with semantically rich information
about the relationship between the audio and visual modali-
ties. The goal of the pretext task is to estimate the number
of vehicles present in the RGB image only using sound as
input to the network. In the ablation study presented in the
main paper, we show that our proposed pretext task improves
the performance in terms of detection metrics. In Fig. 3 of
this supplementary material, we present comparisons of the
training curves for the MM-DistillNet framework, with and
without the initialization of the audio student network with
weights of the model trained on the proposed pretext task.
We can see that the model with weighted initialized from the
pretext task consistently yields a lower loss since the early
stages. Moreover, the final loss is 27.55% lower than the
model trained from scratch. These results demonstrate that
the pretext task not only improves the performance in terms
of the metrics, it also accelerates training and leads to faster
convergence.

4. Evaluation in Low Illumination Conditions

In this section, we compare the performance our pro-
posed MM-DistillNet and the previous state-of-the-art Stere-
oSoundNet [3] in different illumination and driving con-
ditions. StereoSoundNet is trained under the supervision
of the RGB teacher, whereas our MM-DistillNet uses the
RGB, depth, and thermal teachers. Tab. 5 presents results
in terms of the average precision metric for each of these
conditions. We can see that in every scenario our proposed



Condition Vehicle State | Network mAP@ mAP@ mAP@ CDx CDx
Avg 0.5 0.75
Day Static StereoSoundNet [3] 53.48 69.10 52.50 2.77 1.51
Night Static StereoSoundNet [3] 38.13 49.26 34.67 4.34 3.95
Day Driving StereoSoundNet [3] 45.59 69.20 42.84 2.50 1.60
Night Driving StereoSoundNet [3] 28.56 45.18 24.43 3.86 2.77
Day Static MM-DistillNet 63.80 83.90 63.63 1.59 0.78
Night Static MM-DistillNet 75.10 89.63 73.23 1.43 0.70
Day Driving MM-DistillNet 55.73 81.51 52.75 1.24 0.76
Night Driving MM-DistillNet 48.13 67.16 46.07 1.93 1.50

Table 5. Performance comparison of MM-DistillNet in different illumination conditions as well as driving and static (data collection vehicle)
states. Our framework outperform the previous state-of-the-art even in static-day conditions, where the RGB teacher performs the best.
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Figure 4. Qualitative comparison of detection performance with the previous state-of-the-art StereoSoundNet [9] and our MM-DistillNet.
We present a scenario with an occluded car to demonstrates the novelty of using sound which overcomes limitations of visual modalities.

MM-DistillNet substantially outperforms StereoSoundNet,
thereby achieving state-of-the-art performance. We observe
the largest improvement during night time conditions where
StereoSoundNet significantly falls behind. It can also be
observed that even during the day when the data collection
vehicle is not in motion, our MM-DistillNet achieves over
10% improvement in the mAP @ Average. We observe a
performance drop in both the methods from static to driving
conditions, which can be attributed to the distortion of sound
due to the moving data collection vehicle, wind on the mi-
crophone (note that the microphones in the array were not
equipped with a wind muff) and high ambient noise condi-
tions. We believe that high fidelity microphones and hard
negative mining will help overcome this problem. This exper-
iment demonstrates that incorporating knowledge from mul-
tiple modality-specific teachers improves the performance
of the audio student, especially while the data collection
vehicle is in motion and in low illumination conditions.

5. Extended Qualitative Results

In this section, we extend the qualitative evaluations of
our proposed MM-DistillNet. We provide further results that
demonstrate that our MM-DistillNet effectively employs the
knowledge of diverse multimodal pre-trained teachers to
improve the performance of vehicle detection. We first high-
light how the audio modality is able to overcome the visual
limitation by detecting occluded cars in Fig. 4 where the
white car at time ¢ is occluded by the vehicle that appears on
the left at r + 1. However, StereoSoundNet fails to detect the
foreground car, while our MM-DistillNet precisely detects
both the vehicles in the scene, despite the background car
not being visible.

In Fig. 5, we present comparison of both methods during
nighttime where poor light conditions can be observed. Our
MM-DistillNet simultaneously detects multiple cars, even
the distant ones, while StereoSoundNet often fails to detect
beyond one vehicle. These results demonstrate the novelty
of distilling multimodal knowledge in our MM-DistillNet
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Figure 5. Qualitative comparisons of predictions in night scenes from our MM-DistilINet and the single student-teacher StereoSoundNet [9].
We present hard scenarios in poor lighting condition to demonstrate how our model does not suffer from the day to night domain gap.
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Figure 6. Qualitative comparisons of predictions of our MM-DistillNet and the previous state-of-the-art StereoSoundNet [9] in scenarios
with multiple cars. We show that our network is able to simultaneously detect multiple cars, even while the data collection car is moving.

Observe that our network is also able to detect very distant cars.

as it shows substantial robustness in poor light conditions,
thereby successfully overcoming the limitations of distill-
ing knowledge only from RGB images. Additionally, we
qualitatively evaluate the performance of detecting multi-
ple vehicles simultaneously in Fig. 6. Simultaneously de-
tecting multiple vehicles with only sound is an extremely
challenging task due to its low spatial resolution. By dis-
tilling knowledge from multiple modality-specific teachers,
we show that it is not only feasible to detect vehicles si-
multaneously without relying on the arduous data labeling
process, the performance of the detections also substantially
improves. Further enhancing this ability will enable a broad
spectrum of applications of these audio approaches in real
world scenarios. Even though our MM-DistillNet is able
to provide very promising results for object detection and
tracking, the audio modality suffers from limitations of its
own that are highlighted in examples shown in Fig. 7. We
observe that occasionally, distant objects are not detected
and multiple distant objects are detected as a single object.
We believe that a microphone with better sensitivity as well
as more examples of this phenomena in the training set will
enable our approach to improve the performance in these
conditions. Finally, we compare the performance of our
MM-DistillNet and the modality-specific RGB, depth, and
thermal teachers in Fig. 8. The results show the weaknesses
and strengths of each of the selected modalities. Especially

in night scenarios, we can observe how the thermal teacher
contributes to the distillation of knowledge to the audio stu-
dent as it reliably detects cars that are not visible in the RGB
images, due to low illumination conditions.
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