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This appendix to the main paper provides a discussion
on broader impact (Sec. A), additional qualitative (Sec. B)
and quantitative results (Sec. C), as well as implementation
details (Sec. D).

A. Broader impact

At present, computer vision technology to usefully assist
signers remains in its infancy. In large part, this stems from
the high difficulty of achieving robust machine comprehen-
sion of sign language, which falls a long way short of hu-
man performance [2]. Our work, which focuses specifically
on sign localisation, takes steps towards enabling several
practical applications that may become viable even when
a full automatic understanding of sign language remains
incomplete. These include: (1) sign language dictionary
construction to assist students who wish to learn sign lan-
guage, (2) index construction for video corpora, allowing
individuals to search videos by the content of their signing,
(3) wake-word spotting for signing users of smart assistants
like Alexa and Siri, (4) tools for linguists to assist in the
efficient analysis of existing signing data and (5) automatic
large-scale dataset construction to facilitate future research
towards technology that will ultimately be able to provide
useful products and services to the Deaf community.

The development of automatic, accurate sign localisa-
tion also has risks. Notably, It has the potential to be used
for surveillance. Moreover, as with many computer vision
methods employing deep neural networks (as ours does),
the model is prone to fitting the training distribution closely.
As a result, it will be vital that products and services em-
ploying this technology ensure that their users are well-
represented in the training data to avoid a disparity of per-
formance across groups.

*Equal contribution

B. Qualitative results

We refer to our supplementary video at our project web-
page for additional visual results and illustrations. First, we
visualise the attention scores for sample test videos, simi-
larly to Fig. 4 of the main paper. To make it easier to assess
the localisation quality visually, we show an example dic-
tionary video corresponding to the localised sign. Next, we
demonstrate the capability to temporally localise signs in
long continuous videos using this attention mechanism on a
training sequence. Finally, we present our automatic anno-
tations on the training set (that we obtain through checking
against subtitles), which we use for sign language recogni-
tion training. When grouping videos corresponding to the
same word, we observe a temporal alignment across sam-
ples.

C. Additional experimental results

We provide additional quantitative analysis through
experimentation with different subtitle preprocessing ap-
proaches (Sec. C.1), a detailed breakdown of performance
for methods incorporating sparse annotations (Sec. C.2),
additional decoding strategies to mine training examples
(Sec. C.3), and a recognition architecture study (Sec. C.4).

C.1. Subtitle processing

All experiments in this section are reported on Test-%¢ to

evaluate the Transformer training for the sequence predic-
tion task.

Stemming. We experiment with stemming versus using the
original subtitle words in Tab. A.1. The 11K annotation
stems correspond to a vocabulary of 16K words. We train a
model by filtering the subtitles to these 16K words without
any further processing. We observe no significant differ-
ences between the two models. Note that, for a fair compar-
ison, we stem the words at evaluation time.

Vocabulary. In this work, we have used a vocabulary of
11K stems which is determined based on the annotations.
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vocab. Recall Prec. Locap Locrp

Stemming 11K 16.5 37.2 66.1 44.5
No stemming 16K 16.0 35.5 66.8 52.3

Table A.1. Stemming subtitles: We find that stemming might not
be necessary for training. Note that for both models, we stem the
words at evaluation.

% of subtitle  train test #test

vocabulary vocab. vocab. subtitles | Recall Prec. Locgp Locrg

100% 26K 26K 7588 149 356 67.9 499
11K(11K) 7497 159 36.0 68.0 50.2

75% 19K 19K 7567 152 36.0 67.7 389

11K(10K) 7497 ‘ 16.2 363 67.8  39.6
50% 13K 13K 7516 ‘ 159 36.8 66.6 524

11KOOK) 7497 | 16.7 369 66.7 523

25% 6K 6K 7271 17.0 40.0 66.3 520
11IK(6K) 7497 | 17.0 39.0 66.6 51.8

Annot. vocab. 11K 11K 7497 16.5 37.2 66.1 44.5

Table A.2. Vocabulary size: We systematically change the train-
ing vocabulary of stems by taking subsets of the full subtitle vo-
cabulary. We take the top 25%, 50%, 75%, 100% of stems ac-
cording to their frequencies in the subtitles. Each trained model
is tested twice (two rows per model): with (a) the same vocabu-
lary used for training, (b) the comparable 11K vocabulary used in
the rest of the experiments. Note that in (b), there might not be a
full overlap between the train and test; the numbers in parenthesis
represent the intersection.

vocab. Recall  Prec. Locap Locrr

Without stop words 11K 16.5 37.2 66.1 44.5
With stop words 11K 13.9 259 69.5 52.5

Table A.3. Removing stop words: We train a model by including
the stop words (although these rarely have corresponding signs),
and obtain lower performance (13.9% recall).

In Tab. A.2, we train additional Transformer models by us-
ing vocabularies determined by the subtitles. We sort the
stems appearing in all subtitles based on their frequencies.
We train with top 25%, 50%, 75%, 100% of all stems. We
observe that the models are not very sensitive to the choice
of training vocabulary. Note that in all cases, we filter out
the stop words which do not have sign correspondences.
Stop words. In Tab. A.3, we train one model by keeping
the stop words and compare against our model. Note that
we determine the list of stop words according to English
stop words in the nltk.corpus. Qualitatively, we ob-
serve frequent occurrence of the words “and” and “to” in
the predictions. The precision and recall metrics reflect the
reduced quality of the outputs as well. Therefore, we filter
out the stop words in all other models.

Naive translation. Tab. A.4 reports results for training a
model with a large vocabulary, without filtering and with-
out stemming. We again stem the words at evaluation time.
We observe poor performance and highlight the difficulty
of the translation problem on in-the-wild sign language

train test #test

vocab.  vocab.  subtitles | Recall Prec. Locgp  Locrp
40K 40K 7413 9.5 7.5 70.3 27.1
40K 16K 7299 10.3 7.5 70.3 27.0

Table A.4. Naive translation with 40K vocabulary: We report
the results of training a model without stemming and without vo-
cabulary filtering (except we filter to the 260K English vocabu-
lary of Transformer-XL to remove the noise in the subtitles, due
to OCR mistakes etc.). We test the model on (a) the same 40K
vocabulary used for training, and (b) the 16K subset covering the
annotations. Overall, we observe poor precision and recall.

data. A few qualitative predictions are provided below.
We note that while some examples have overlap between
ground truth and prediction (#1, #2, #3), many examples re-
peat the same prediction (#4, #5), or output frequent words
(#6). As argued in the discussion section of the main pa-
per (Sec. 4.6), we believe that the video-text alignment and
large-vocabulary sign recognition problems should become
more advanced to achieve in-the-wild translation.

Example #1

Reference: through your own admission your last
time in the competition

Hypothesis: the competition is a competition

Example #2
Reference: 1lots of water to help digest such a meal
Hypothesis: and then the water is the water

Example #3
Reference: people talk you see
Hypothesis: i think the people were a good

Example #4
Reference: and just tease out the dead growth
Hypothesis: and the whole thing is a little bit

Example #5
Reference: and how little we knew about the species
Hypothesis: and the whole thing

Example #6
Reference: wrong here again going to give it how many
Hypothesis: i think that is a good

C.2. Incorporating sparse annotations

As in Sec. C.1, all experiments in this section are re-
ported on Test5%.
Alignment loss on sparse annotations. Tab. A.5 presents
detailed results on the incorporation of the alignment loss
as described in Sec. 4.3 of the main paper. Although minor
improvements are observed with the addition of such a loss
term, we do not use it in the final model for simplicity.
Curriculum learning with sparse annotations. Tab. A.6
reports results with and without the curriculum strategy de-
scribed in Sec. 4.3 of the main paper. We obtain minor
improvements with pretraining the Transformer on shorter
temporal segments containing only 1 annotated sign, fine-
tuning the model later on 2 and 3 signs. Note that this model
uses 1 layer in both encoder and decoder unlike other exper-
iments which use 2 layers (we note from our Transformer



Loc. Acc. (GD) | Loc. Acc. (TF)

ALaign L Recall Prec. | layer 1/2  [avg] | layer /2 [avg]
0 - 16.5 372 \ 63.9/57.8 [66.1] \ 51.1/37.6 [44.5]
10 avg 16.8 37.5|64.7/59.2 [66.0] |51.4/36.1 [45.2]

100 avg 164 37.2|67.4/60.7 [68.0]|52.8/42.3 [48.0]
1000 avg 144 345 |68.9/59.0 [67.3]|52.5/55.8 [56.6]

10 1 168 383 |62.9/63.8 [66.4]|51.2/40.7 [43.1]
100 1 16.7 37.3 | 67.5/63.6 [66.7]|52.9/38.5 [42.1]
1000 1 157 33.5(59.4/69.8 [69.6]|57.0/35.6 [48.7]
10 2 168 37.4 |65.8/59.2 [67.3]|51.7/36.8 [47.1]
100 2 162 37.7|68.5/57.2 [68.0]|46.0/50.4 [47.5]
1000 2 14.8  35.5|67.1/59.2 [66.3] | 42.5/58.7 [53.6]
Table A.5. Alignment loss on sparse annotations: We ex-

periment with different weighting terms for the alignment loss
(ALa1iq, ) in addition to the classification loss during subtitle train-
ing. We define the loss on various attention layers (L) of a 2-layer
architecture. We observe minor improvements.

Training schedule Recall Prec. Locgp Locrp

No curriculum: Subtitle 15.8 36.4 659 448
With curriculum: 1—2—3—Subtitle 16.0 37.1 66.6 443

Table A.6. Curriculum learning with sparse annotations: We
observe minor improvements by incorporating curriculum learn-
ing, which gradually extends the temporal window of the input
video. Note that a 1-layer encoder-decoder architecture is used for
this experiment.

Training subtitles Recall Prec. Locgp Locrp

662K not aligned 6.8 163 67.1 270
183K not aligned (subset) 6.2  15.0 654 255
230K aligned 154 383 66.7 515
301K coarse (pad £2-sec) 13.9 452 67.6 483
183K coarse 16.5 372 66.1  44.5
Table A.7. Subtitle-video alignment: Our coarse alignment,

which uses the assumption that the subtitles that have at least one
annotation within the subtitle timestamp is aligned with its video,
obtains the best performance over other alignment variants or us-
ing no alignment.

layer ablations reported the main paper that this does not
dramatically affect localisation performance).

Video-subtitle alignment. Tab. A.7 details our experiments
which highlight the importance of video-subtitle alignment.
When using all subtitles without considering whether they
contain an annotation or not (662K subtitles), we obtain
poor recall on the test set where there is at least one high-
confidence (>0.9) annotation. To keep the number of train-
ing subtitles same as our final model, we also experiment
with taking a random subset of 183K subtitles, and observe
a similar outcome of poor performance. When using active
signer detection and sparse annotations to apply a simple al-
gorithm to align the subtitles, we get to 230K training sub-
titles that have at least 1 annotation; however, this model
does not impact the results significantly. To take the uncer-

#subtitles ~ #ann.  #ann. top-1 top-1
Spotting mode unannot. 11K 1K | per-inst  per-cls
TF (> .05) 457K 23M 754K 38.7 14.4
BS (10 best) 109K 329K 166K 49.6 22.7
BS (1 best) 109K 316K 161K 50.7 233
TF prediction 57K 195K 110K 51.3 22.5
GD 53K 188K 107K 539 24.7

Table A.8. Other decoding strategies: TF: teacher-forced de-
coding, filtering with a threshold on attention scores; BS (10 best):
beam search decoding with beam size 10 - all returned hypothe-
ses are used when looking for new instances; BS (1 best): the same
beam search is performed (with beam size 10) but only the hypoth-
esis with the highest recall is used; TF prediction: teacher-forced
decoding, using the hypothesis predicted by the model and check-
ing against subtitle; GD: greedy decoding. The strategies shown
in bold font refer to experiments not included in the main paper
and are described in more detail in Sec. C.3. For the rest, we refer
to Sec. 4.3 of the main paper.

tainty into account, we also experiment with padding £2
seconds at the start and end of the subtitle times to input
more video features to the model. However, this model also
reduces the recall. Our simple coarse alignment strategy of
using subtitles that have at least 1 annotation results in the
best performance.

C.3. Decoding strategies

In Sec. 4.3 of the main paper, we have described differ-
ent decoding mechanisms to mine new training annotations
by applying the Transformer model. Here, we provide two
more strategies to complement Tab. 3 (a) 1 best: choos-
ing the hypothesis with the highest recall when applying
beam search with size 10, (b) TF prediction: decoding with
teacher forcing and forming a hypothesis using the model’s
prediction at every step, then filtering the hypothesis by only
keeping the tokens that are also present in the correspond-
ing subtitle (same as with GD); this is an alternative form of
the TF baseline — here we also use the attentions of the first
layer only. The new results are denoted with bold font in
Tab. A.8 for TestssS,. The best result is achieved by simple
greedy decoding (GD) which has smaller but more noise-
free sign localisations.

Fig. A.1 shows several training plots corresponding to
different decoding mechanisms. The curves suggest that
mining more examples with higher noise results in low
training performance. The plotted metric is top-1 per in-
stance accuracy over 30 training epochs.

C.4. Recognition architecture study

We present an experimental study for the architecture de-
sign of our MLP which is used for recognition. Tab. A.9
summarises the results on TestsS. for training with all
M+D+A annotations, i.e., our best model in Tab. 4 of the
main paper. While the results are not significantly different,
we observe minor improvements with increased capacity,

which quickly saturates when adding more layers.
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Figure A.1. Training recognition with attention spottings:
We plot the training (left) and validation (right) accuracy curves
against the epoch number for different MLP models, correspond-
ing to different decoding strategies to mine training examples. The
legend corresponds to descriptions in Tab. A.8 and Tab. 3 of the
main paper. See Sec. C.3 and Sec. 4.3 of the main paper for de-
tails. We conclude that increased noise in teacher forcing mecha-
nism (dashed), despite its large yield, makes learning difficult.

per-instance  per-class
Architecture top-1 top-5 top-1 top-5
1024—res(1024)—512—256 65.1 826 380 564
1024—512—256 64.6 823 365 551
1024—256 63.8 820 352 539
1024—res(1024)—512—128 649 826 374 559
1024—res(1024)—512—512 653 826 384 570
1024—res(1024)—512—1024 655 829 39.0 574
1024—res(1024)—512 653 829 379 56.6
1024—res(1024)—512—512—1024 65.5 827 39.0 574

1024—res(1024)—512—512—512—1024 65.0 824 383 57.1

Table A.9. Architecture study for recognition: We experiment
with different number of layers for the sign recognition model.
The input dimensionality is 1024, which is a temporally-averaged
I3D embedding over 16 frames. The output is 1064-dimensional
class probabilities. The top row is what is reported in the main pa-
per (corresponding to Fig. A.2). We observe minor improvements
by increasing the network capacity.

D. Implementation details
D.1. Application of M [1] and D [3]

As explained in Sec. 4.1, we apply the method of [1] to
localise signs through mouthing cues on a large vocabulary
of words beyond 1K (which is used in the original work). In
particular, we query 36K words, and out of these, a vocabu-
lary of 15K words are localised with confidence above 0.7.
When applying the method of [3] to localise signs through
similarity matching with dictionary videos, we query 9K
signs from the full BSLDict dataset with search windows of
44 seconds padding around the subtitle timestamps. The
resulting sign localisations with confidence above 0.7 cover
a vocabulary of 4K words. The combination of these two
methods gives us a total vocabulary of 16K words, which
results in the 11K stems used for our Transformer training.

Input RGB Video
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Figure A.2. MLP architecture for recognition: We follow [4],
and use one residual connection, followed by 3 more fully con-
nected layers on top of the I3D pre-extracted features.

D.2. Architecture and training details

Our Transformer model consists of 2 attention layers for
both encoding and decoding. The input 1024-dimensional
video feature is mapped to 512 dimensions with a linear
layer. Then 512-d embeddings are used both for output
words and input videos. We use 2 heads in each attention
layer.

When reporting localisation accuracy, we average the
encoder-decoder attention scores over the 2 heads. We take
the first layer attention for teacher forcing (TF) and the av-
erage over two layers for greedy decoding (GD). We mark
a correct localisation if the maximum location over the in-
put video is within 2 feature frames from the annotation
time. This is because one sign approximately lasts for 7-13
frames (at 25fps) [4] and our features are extracted with a
stride of 4 frames, making our valid window duration +8
video frames. This also accounts for some uncertainty in
the ‘ground-truth’ annotation times which are obtained au-
tomatically.

We detail our MLP architecture in Fig A.2. We use a
design similar to [4]. The architecture study in Sec. C.4
reports variations of this model. We train it for 30 epochs,
with an initial learning rate of 1e~2 reduced by a factor 10
at the 20th and 25th epoch.

D.3. Infrastructure

We use Nvidia M40 graphics cards for our experiments.
The video-subtitle Transformer model trains in 10 hours
on a single GPU. The annotation mining time is roughly
30 minutes to obtain 107K annotations, i.e., Transformer
forward pass runtime over 1302h of training videos (dura-
tion of 685K subtitles padded with 2 seconds) on a single
GPU. The final best MLP (M+D+A) for sign recognition
trains in 7 hours on a single GPU. The M+D I3D backbone
is trained with 4 GPUs over a duration of 1 week.
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