
Appendix

A. Relative embeddings add very few parame-
ters to the model

Our parameters grow very slowly with receptive field. In
this section, we will show that the number of parameters in
the relative embeddings, the only spatially dependent param-
eters, is quite small. As described in the paper, the output of
local 2D self-attention at position (i, j) is computed as:

yij =
∑

a,b∈N (i,j)

softmaxab

(
q>ijkab + q>ijra−i,b−j

)
vab (4)

where the queries qij = WQxij , keys kab = WKxab, and
values vab = WV xab are linear transformations of the pixels,
and ra−i,b−j is a learned relative position based embedding.
Following the Transformer [53], we also use multihead at-
tention, where we run multiple instances of the self-attention
in parallel with different parameters. However, each head
shares the parameters for the relative embeddings ra−i,b−j .
For an attention window of size k around each pixel, we
factorize the relative embeddings along height and width fol-
lowing [39], and we allocate half the channels within a head
to each of these. Keeping the dimension per head fixed at 16
as mentioned in the paper, this gives a constant 2(k− 1) ∗ 16
parameters per attention layer layer for ra−i,b−j . In contrast,
if the channels in an attention layer are d, then each of the
three linear transformations has d2 parameters. Thus the
ratio of parameters in the relative embeddings as compared
with the linear projections is 2(k−1)∗16

3d2 , which is small for
typical values of k and d.

Dimension Values Accuracy Baseline
∆Baseline Scaled

Layers 50 98 81.4 0.9
rv 1.0 3.0 81.0 0.5
rw 1.0 1.25 80.9 0.4
rb 4.0 6.5 80.6 0.1
rqk 1.0 6.5 80.3 -0.2

Table A1. Increasing the number of channels for the values and
number of layers has the most impact on accuracy.

B. Study of enlarging self-attention models
In Section 4.3, we presented some scaling properties of

our models. In Table A1, we try to understand which other
parts of our models most impact accuracy. For our study, we
increase the size of HaloNet-50 by scaling different hyper-
parameters to reach a parameter budget of 30 million. We
find that adding more computation in the attention by in-
creasing rv and adding more layers are most fruitful scaling
dimensions for increasing accuracy.

C. Experimental details, hyperparameters,
and expanded results.

C.1. ImageNet classification

In Table A2, we describe the configurations of our
HaloNet models, H1 − H7. The hyperparameters in the
HaloNet family are: image size s, query block size b, halo
size h, attention output width multiplier rv, bottleneck out-
put width multiplier rb, number of bottleneck blocks in the
third group l3, and final 1 × 1 conv width df . Each of our
HaloNet models is trained on a comparable image size to the
corresponding EfficientNet [51] model. The image sizes can
be found in Table A2.

C.2. Classification hyperparameters

In this section we complete the details of our training
and regularization setup. We used a weight decay of 2e−5

and using a cosine annealing scheme [33] with learning rate
0.1. The largest models consistently overfit at the very end
of training, which we attribute to the learning rate going
to 0 at the end of training [60]. To combat this, we set
the end of the cosine annealing to be 1.0

128 of the original
learning rate instead of 0. For RandAug [8] we grow our
RangAug magnitudes for the smallest H0 to the the largest
H7 models as 6, 8, 10, 14, 17, 19, 24 and 31. Note that we
have not extensively tuned the RandAug magnitudes.

C.3. Transfer from ImageNet-21k

Our experiments thus far have focused on training from
scratch on ImageNet-ILSVRC-2012 [43], where regulariza-
tions and longer training are critical for good accuracies.
Papers such [10, 26] have shown that a short finetuning
step after pretraining models on larger labelled datasets such
as ImageNet-21k [9] or JFT-300M [48] can achieve better
accuracies without the need for regularization. To under-
stand the transfer properties of HaloNet models, we scale
up HaloNet-H4 by increasing the base width to 128 and
evaluate the transfer protocol from [26], pretraining on the
public ImageNet-21k dataset, and finetuning on ImageNet.
Following our observation in Table 4, we also train a hybrid
version of this model with convolutions in the first two stages
and one that uses linear projections of non-overlapping 4×4
patches (row 2 in Table A3, similar to ViT. Note that using
linear projections with non-overlapping patches is equivalent
to using a convolution where the spatial dimensions of the
stride and the kernel are the same, 4 × 4 in this case. We
make 4 changes to our HaloNet H4 model (See Table A2 for
specification of the H4 model). To increase the number of
parameters in the model body, We increase the base width
rw to 2.0 (Making the base width 128, twice the normal
width), and we also change rb from 3.0 to the default 4.0.
We remove the final extra 1×1 convolution, so that the label
embeddings have a large number of filters to account for the

HaloNet
Model

b h rv rb Total
Layers

l3 s df Params
(M)

EfficientNet
Params (M)

EfficientNet
Image Size (M)

H0 8 3 1.0 0.5 50 7 256 – 5.5 B0: 5.3 224
H1 8 3 1.0 1.0 59 10 256 – 8.1 B1: 7.8 240
H2 8 3 1.0 1.25 62 11 256 – 9.4 B2: 9.2 260
H3 10 3 1.0 1.5 65 12 320 1024 12.3 B3: 12 300
H4 12 2 1.0 3 65 12 384 1280 19.1 B4: 19 380
H5 14 2 2.5 2 98 23 448 1536 30.7 B5: 30 456
H6 8 4 3 2.75 101 24 512 1536 43.4 B6: 43 528
H7 10 3 4 3.5 107 26 600 2048 67 B7: 66 600

Table A2. Configurations of HaloNet models, each of which matches a model from the EfficientNet family in terms of parameters.
The number of heads in the four stages are (4, 8, 8, 8). The notations are: image size s, query block size b, halo size h, attention output
width multiplier rv , bottleneck output width multiplier rb, number of bottleneck blocks in the third group l3, and final 1× 1 conv width df

Model Parameters
(Millions)

Pretraining
Image Size

(Pixels)

Pretraining
Step Time

(32 per core)

Finetuning
Image Size

Finetuning
Top-1

Accuracy (%)

Inference
Speed

img/sec/core

H4 (base 128) 85 256 377 ms 384/512 85.6/85.8 121.3/48.6
H4 (base 128, 4× 4 patch) 85 256 366 ms 384/512 85.4/85.4 125.7/56.5

H4 (base 128, Conv-12) 87 256 213 ms 384/512 85.5/85.8 257.6/120.2
ViT-L/16 300 224 445 ms 384/512 85.2/85.3 74.6/27.4
BiT-M 928 224 1021 ms 384 85.4 54.2

Table A3. HaloNet models pretrained on ImagetNet-21k perform well when finetuned on ImageNet. For HaloNet and ViT, we
finetuned on 384× 384 and 512× 512 size images. The pretraining step time reports the TPUv3 compute time for a batch size of 32 per
core. The inference speed is also computed on a single TPUv3 core.

larger number of labels. We also add another layer in the
second stage, increasing it from 3 to 4 For the hybrid model,
we use convolutions in the first two stages. For a fair com-
parison with [26], we do not use squeeze-and-excitation [20]
in the stages with convolutions.

ImageNet-21k contains 14.2 million annotated images,
and 21k labels, both an order of magnitude larger than Im-
ageNet. Following [26], we pretrain for 90 epochs with a
batch size of 4096, and a base learning rate of 0.16, which
is linearly warmed up for 2 epochs followed by cosine de-
cay [33]. We also use a weight decay of 0.00008, and train
with Nesterov’s Accelerated Gradient [35, 49] during pre-
training and finetuning. We pretrain on 256×256 size images
and finetune on different image sizes, as shown in Table A3.
Our wider H4, patch based, and hybrid-H4 models achieves
better accuracy than the Vision Transformer and a 4× wide
ResNet-152 from [26] and are also faster at inference on
larger images. We finetune for 8 epochs on ImageNet, ini-
tializing with the parameters learned from pretraining except
for the label embedding matrix, which is initialized to zeros.
We train with a batch size of 512, a learning rate of 0.016
and cosine decay after linearly warming it up for 0.5 epochs.
We benefit from finetuning with a label smoothing of 0.1
during finetuning despite pretrainig on a larger dataset. We

do not use Polyak averaging [37], and other regulariations
during finetuning.

Our preliminary results on transfer are promising since
we achieve better parameter-accuracy and speed-accuracy
tradeoffs than other models on this dataset. We leave the
study of transfer with larger HaloNet and HaloNet hybrids
for future work. The speed advantages of our models on
larger images make them desirable for challenging structured
prediction tasks on large images such as object detection and
instance segmentation, as shown in Section 4.5.

C.4. Detection and instance segmentation hyperpa-
rameters

We only replace the last 3 convolutional layers in the
ResNet-50 and ResNet-101 backbones with two halo lay-
ers with block size, b = 8 and halo size h = 3 (Rows 3
and 6 in Table A4). For ResNet-50, we also examine using
b = 32 and halo size h = 3 to understand benefits from
larger receptive fields. We also use squeeze-and-excitation
with convolutions and pre-train them on 512× 512 images
with the regularizations mentioned in Section 4.2.1: label
smoothing, RandAugment, and stochastic depth. We train
our models on the COCO dataset [32] with 1024 × 1024
size images for 32 epochs, using the Cloud TPU Detection

Model APbb APbb
s APbb

m APbb
l APmk APmk

s APmk
m APmk

l
Speed
(ms)

Train
time
(hrs)

R50 baseline in lit 42.1 22.5 44.8 59.1 37.7 18.3 40.5 54.9 409 14.6

R50 + SE (our baseline) 44.5 (+2.4) 25.5 47.7 61.2 39.6 (+1.9) 20.4 42.6 57.6 446 15.2
R50 + SE + Local Att (b = 8) 45.2 (++0.7) 25.4 48.1 63.3 40.3 (++0.7) 20.5 43.1 59.0 540 15.8

R50 + SE + Local Att (b = 32) 45.4 (++0.9) 25.9 48.2 63.0 40.5 (++0.9) 21.2 43.5 58.8 613 16.5

R101 + SE (our baseline) 45.9 (+3.8) 25.8 49.5 62.9 40.6 (+2.9) 20.9 43.7 58.7 740 17.9
R101 + SE + Local Att (b = 8) 46.8 (++0.9) 26.3 50.0 64.5 41.2 (++0.6) 21.4 44.3 59.8 799 18.4

Table A4. Accuracies on object detection and instance segmentation. We experiment with two settings for self-attention in the last
stage: A block size of (b) of 8 and a halo size (h) of 3 and also with (b = 32, h = 3) for ResNet-50. bb (bounding box) refers to detection,
and mk (mask) refers to segmentation. The identifiers s, m, and l refer to small, medium, and large objects respectively. Speed is measured
as the milliseconds taken by only the backbone (and not the FPN) for a batch size of 32 on 2 TPUv3 cores. The train time the total training
time calculated from the peak images/sec of the Mask-RCNN training run on 8 TPUv3 cores with a batch size of 64.

Codebase 5. We use Mask-RCNN [13] for all detection and
instance segmentation experiments. We pretrain the back-
bone on ImageNet, mostly reusing the same hyperparameters
as in Section C.2. Backbones are pretrained for 350 epochs
using an image size of 512, which was chosen to be closer
to the 1024 image size used in detection setting. The mod-
els were regularized with RandAug at a magnitude of 15
and stochastic depth with probability 0.1, and use Squeeze-
Excitation with a reduction factor of 1

8 . The detection code
and hyperparameters directly used the open-source TPU de-
tection and segmentation framework. During the detection /
instance segmentation phase, the backbone is initialized with
the pretrained weights, while the other parameters are initial-
ized from scratch. The model is trained for 67500 steps with
0.1x learning rate decays at 60000 and 65000 steps, uses a
learning rate of 0.1 in SGD with 0.9 momentum, a warmup
of 500 steps with a fixed learning rate of 2

300 , a batch size
of 64 spread across 32 TPUv3 cores, 1024 × 1024 image
size, an L2 weight decay of 4e−5, and multi-scale jitter with
magnitudes between [45 ,

5
4].

In Table A4, we see that interestingly, localization of
large objects (AP ∗l) shows the largest improvement when
attention is used. Larger block sizes (b = 32 in row 4)
achieve very close performance to b = 8 while being slower.
However, we see that b = 32 does much better than b =
8 on small objects (AP ∗s). Future work can combine the
best of these two settings. Note that with b = 32, the last
two attention layers do global attention since the image is
downsampled to 1024

32 = 32 pixels in each spatial dimension.
Concurrent work, BoTNet [46], uses global self-attention in
ResNet-Attention hybrids for structured prediction tasks and
classification. See [46] for additional details on the efficacy
of global attention for localization tasks

5https://github.com/tensorflow/tpu/tree/master/
models/official/detection

D. Optimizations
We endeavor to avoid data formatting operations when-

ever possible, which can slow down the model, resulting in
the following two key optimizations

• Persistent blocking: Once the image is blocked, we
flatten the (b, b) blocks to sequences of length b2, and
we do not reshape it back to 4D until the end of the net-
work, implementing operations such as batch normal-
ization [24] to handle the blocked format. The image is
thus processed in 5D: (Batch, H

b ,
W
b , b2, c) instead of

(Batch, H,W, c).

• Gathers with convolutions: The haloing described in
Section 2.2 is also carried out in 5D resulting in flat-
tened neighborhoods. For speed, we implement haloing
with 3D convolutions used as gathering operations in-
stead of slices and concatenations.

E. Discussion on training speed
Figure A1 shows that pure self-attention6 based HaloNets

are currently slower to train than the corresponding Efficient-
Nets and require further optimizations for large batch train-
ing. However, our hybrids have the same speed-accuracy
tradeoff as EfficientNets. On transfer from ImageNet-21k,
our models outperform very strong models such as BiT [26]
and ViT [10], on both accuracy and speed. Model optimiza-
tions, such as using architecture search methods to find better
speed-accuracy tradeoffs or different forms of more power-
ful and/or efficient attention forms [62, 42], are promising
directions for machine learning researchers. Implementa-
tion optimizations, such as better memory management, can
improve the practicality of these models. Also, scaling up
our models to larger widths might cause our operations to
transition from being memory bound to compute bound, and

6By pure attention we mean models that use self-attention in all layers
except the stem, which is convolutional.

H0 H1 H2 H3 H4 H5 H6 H7
Model configuration

0

500

1000

1500

2000

TP
U

v3
 c

om
pu

te
 ti

m
e

(m
s)

C123

C12

C1

HaloNet vs EfficientNet step times

HaloNet
EfficientNet

Figure A1. Pure attention based HaloNet models are currently
slower to train than efficient net models. The times are the
TPUv3 compute time needed to process a batch size of 32 per
core. The points in green with annotations C1, C12, and C123
correspond to the hybrid models with convolutions in stages 1, 1–2
and 1–3 respectively. (see Table 4).

lead to better speed-accuracy tradeoffs. We leave this study
for future work.

F. Acknowledgements
We would like to thank David Fleet for valuable discus-

sions. We would also like to thank Irwan Bello, Barret Zoph,
Mingxing Tan, and Lucas Beyer for valuable commentary
on earlier drafts of the paper.

