
VDSM: Unsupervised Video Disentanglement with State-Space Modeling and
Deep Mixtures of Experts (Supplementary Material)

Matthew J. Vowels
m.j.vowels@surrey.ac.uk

Necati Cihan Camgoz
n.camgoz@surrey.ac.uk

Richard Bowden
r.bowden@surrey.ac.uk

Centre for Vision, Speech and Signal Processing
University of Surrey

Guildford, UK

Fraction of Training

Va
lu

e

Figure 1. Annealing schedules and temperature schedules for
VDSM during pretraining. Shows the weight λz on the KL di-
vergence for the time varying pose factor znt , the weight λs on the
KL divergence for the identity factor sn, and the temperature τs
for the identity factor.

1. Code and Qualitative Video Samples

Code and example video can be found via the fol-
lowing URL: https : / / github . com / matthewvowels1 /
DisentanglingSequences as well as in the ‘samples’ folder
in the supplementary material.1

2. Overview of Supplementary Material

This supplementary material provides additional infor-
mation and results for the work titled ‘VDSM: Unsuper-
vised Video Disentanglement with State-Space Modeling
and Deep Mixtures of Experts’. We first provide details
about the network architecture, training details, run-time es-
timates, and briefly discuss the results of a simple ablation

1These are .gif files which may need to be viewed in (e.g.) an internet
browser for animation.

Fraction of Training

Va
lu

e

Figure 2. Annealing schedules and temperature schedules for
VDSM during training of the sequential components. Shows the
weight λz on the KL divergence for the time varying pose factor
znt , the weight λs on the KL divergence for the identity factor sn

(constant during this phase of training), and the temperature τs for
the identity factor.

experiment. Qualitative results for the synthetic pendulum
dataset are presented in Figure 3, and this is the figure ref-
erenced in Section 4.2 of the main paper. We then provide
a derivation for the ELBO presented in Equation 4 in the
main text, and finally present a range of qualitative results
for the MUG [1], Sprites [5], moving MNIST [8] and syn-
thetic pendulum dataset.

3. Network Architecture
The network was implementation using a combination of

Pytorch [7] and Pyro [2], and the code has been included as
part of the supplementary material. Various relevant hyper-
parameters and dimensionalities are shown in Table 1 and
2.

Encoder and Static Factors: The encoder comprises
the following blocks:

1

https://github.com/matthewvowels1/DisentanglingSequences
https://github.com/matthewvowels1/DisentanglingSequences

Dataset lr-Pre lr-Seq Epochs-Pre Epochs-Seq BS-Pre BS-seq Seq Len BPE-Pre BPE-Seq
MUG 1e-3 1e-3 250 200 20 20 20 50 50
Sprites 8e-3 1e-3 300 200 20 20 8 50 50
MMNIST 1e-3 1e-3 300 200 20 30 16 50 50
Pendula 5e-4 1e-3 200 100 50 20 16 50 50

Table 1. VDSM hyperparameter settings for each dataset. ‘Pre’ and ‘Seq’ refer to the pre-training and sequence training respectively. ‘BS’
is batch size, ‘lr’ is learning rate, and ‘BPE’ is the number of batches per epoch.

[Conv2D(32,4,1), LeakyReLU, BlurPool],
[Conv2D(32,4,2), LeakyReLU, BlurPool],
[Conv2D(32,4,2), LeakyReLU, BlurPool],
[Conv2D(64,4,2), LeakyReLU, BlurPool],
[Conv2D(64,4,2), LeakyReLU]
where Conv2D(x, y, z) is the convolution operation with
x, y, z being the number of output filters, the kernel size,
and the stride, respectively. The first block (only) has
padding of 1. LeakyReLU is the leaky rectified linear unit
[6], and blur pool enables anti-aliased downsampling [10].
The output is reshaped and fed to separate two conseque-
tive fully-connected layers [FC(256, 128), FC(128, 2κs)]
(where the two arguments are the number of input and out-
put neurons) to yield the embeddings for sn (the identity),
and fed to a single fully connected layer [FC(256, 2κz] to
yield the embeddings for znt (the time varying components).
These embeddings are split into two to yield the location
and scale parameters of the Normal distributions used to
model the two factors.

Dataset κz κs κd RNN Layers RNN dim.
MUG 30 15 50 3 512
Sprites 30 40 50 3 512
MMNIST 30 12 50 3 512
Pendula 30 8 50 3 512

Table 2. κz , κs, and κd are the dimensionalities of the pose, iden-
tity, and dynamics/action latent factors, respectively. Both the bi-
LSTM encoder and the uni-directional LSTM decoder have the
same number of layers and hidden dimensions (3 and 512, respec-
tively).

Dynamics Layer, LSTMs and Combiner: The seq2seq
encoder is a bi-LSTM, and the decoder is a uni-directional
LSTM, each with settings listed in Table 2. The output of
the bi-LSTM is a hidden representation with a dimensional-
ity equal to RNNdim × RNNlayers × 2. This hidden repre-
sentation is fed into the full-connected dynamics layer with
output dimensionality 2×κd, and is split in half to yield the
location and scale of dn. The RNN decoder outputs per-
timepoint vectors which are fed through a fully-connected
layer FC(RNNdim × 2, 2 × κz). The intermediary hidden
size of the combiner network is 512, and otherwise the pa-
rameter shapes of the fully connected layers in the combiner
are determined by the dimensionalities of the inputs and the
outputs of the function (i.e., the dimensionalities of znt ,h

n
t ,

and dn).
Transition Network: The transition network follows

the structure described in the main paper. The intermediary
hidden size used in the network is 64 and otherwise, like the
combiner network, has fully connected layer weight sizes
determined by the input and output dimensionalities of the
function (i.e., the dimensionalities of znt and dn).

Mixture of Experts Decoder: The Mixture of Experts
(MoE) decoder (or generator) has Ns = κs number of de-
coders which each follow this structure:

[ConvTrans(1,0), LeakyReLU]
[ConvTrans(2,1), LeakyReLU]
[ConvTrans(2,1), LeakyReLU]
[ConvTrans(2,1), LeakyReLU]
[ConvTrans(2,1), LeakyReLU]
where ConvTrans is 2-dimensional transpose convolu-

tion operation. The weights and biases for the ConvTrans
operations are blended using the sn sample which is du-
plicated Tn times and concatenate with the pose vector for
decoding.

Annealing Schedules: Although very little tuning was
required, the schedules for annealing the weights on the KL
terms in the objective do need to be considered. Figures
1 and 2 show the annealing schedules for pre-training and
sequence training. The function describing the profile of the
pretraining curves is sinusoidal, whereas for the sequential
training λz curve is derived using quadratic interpolation.

4. Derivation of the Lower Bound

The derivation follows the same process as in [4]. We
first present the factorization of the generative and infer-
ence models in Equations 1 and 2, respectively (it may be
useful to reference the DAGs in the main paper). The com-
pact representation of the ELBO objective is then shown
in Equation 3, and its final form is shown in Equation 4.
The first line in Equation 4 is derived straightforwardly ac-
cording to the factorization of Equations 1 and 2. However,
the second line s further attention, and relates to the time-
dependent nature of the pose factor znt and its dependence
on the dynamics dn. Omitting the weighting factor λz , The
second line can be compactly reduced to Equation 5. Note
that the derivation and equations have been presented in sin-
gle column format for legibility.

2

Figure 3. VDSM-generated frames for the synthetic pendulum dataset. Left figure illustrates how VDSM can be used to generate video
far into the future (40 frame shown). Right figure illustrates how VDSM can transfer the action/dynamics onto a new identity. For this we
simply use dn from the purple or red pendulum sequences and apply it to generate sequences for the orange and blue pendula. ‘Target’
indicates the desired action, whilst ‘ID’ indicates the identity to which the action is transferred during sequence generation.

5. Additional Qualitative Results

Additional, randomly sampled qualitative results are
shown in Figure 4 to 9, beginning with samples from the
swinging pendulum dataset, then moving MNIST, Sprites,
and finally MUG.

6. Ablation - Using a Single Decoder

Whilst the encoder used to derive a compact represen-
tation from the video frames was of comparable complex-
ity to alternative/competing methods, the complexity of the
mixture-of-experts decoder is arguably much greater. This
is because it essentially comprises a bank of decoders, each
which their own set of trainable weights. The network de-
rives a mixing coefficient (which tends towards a discrete
categorical latent variable) that blends or selects from the
bank of decoders. Even though only one blended set of
weights from the complete bank of weights is used for any
one sequence, there is a significantly larger number of pos-
sible decoder configurations owing to the use of mixing.

We ran an additional experiment to explore what hap-
pens if we use only the inferred mixing coefficient as a
latent variable alone, and do not use a bank of decoder
weights (i.e. just a single decoder). We found that the re-
duced model resulted in a complete failure of the model to
disentangle identity from pose (i.e. both factors were highly
entangled, and identify/pose swapping was not possible). It
is difficult to ascertain to what extent this failure is due to
the reduction in complexity associated with the use of sin-
gle set of decoder weights, and to what extent it has some-
thing to do with a difference in resulting optimization dy-
namics which lead to different convergence properties. One
possible way to establish this would involve a full hyperpa-
rameter search over the reduced model (the one without the
mixture of decoders) to understand whether it is possible to
achieve convergence. We leave this to future work.

7. Hardware and Run Times
The model was trained an tested on a GPU (e.g. NVIDIA

2080Ti) driven by a 3.6GHz Intel I9-9900K CPU running
Ubuntu 18.04. Using the Sprites dataset by way of example,
pre-training (1st stage) took 15 seconds for each of the 300
epochs, completing in 75 minutes. Sequence training (2nd
stage) took 43 seconds for each of the 200 epochs, com-
pleting in approximately 2 hours 20 minutes. It is worth
noting that pretraining and sequence training was found to
converge significantly faster - as few as 100 epochs and 80
epochs respectively - corresponding to a total training time
of approximately 80 minutes. However, a limited hyperpa-
rameter space was explored for this work, and we leave de-
tailed efficiency studies to future work. At inference time, it
was found that a batch of 20 sequences could be generated
and saved to disk in approximately 0.2 seconds.

Using the code provided here: https://github.com/
DLHacks/mocogan we ran a 64 × 64 × 3 version of the
Weizmann dataset [3] to get an approximate training time
comparison against MoCoGAN [9]. The default frame di-
mensions are 96 × 96 × 3, and so it was first necessary to
modify the generators, discriminators, and dataset, accord-
ingly. Using the default training settings for this dataset
resulted in a total training time of 5 hours 3 minutes (0.2
seconds per iteration, for 100,000)). Even though this is a
fast and loose comparison (with smaller data), it does sug-
gest that VDSM training time (both stages included) may
considerably faster than that of MoCoGAN.

3

https://github.com/DLHacks/mocogan
https://github.com/DLHacks/mocogan

Generative model:

pθ(x
n
t=1:Tn , s

n,dn, znt=1:Tn) = pθ(s
n)pθ(d

n)pθ(z
n
t=1)

Tn∏
t=2

pθ(x
n
t |sn, znt)pθ(znt |znt−1,dn) (1)

Inference Model:

qφ(s
n,dn, zt=1:Tn |xnt=1:Tn) = qφ(s

n|xnt=1:Tn)qφ(d
n|xnt=1:Tn)qφ(z

n
t=1, |xnt=1:Tn ,d

n)

Tn∏
t=2

qφ(z
n
t |znt−1,xnt=1:Tn ,d

n) (2)

ELBO Objective:

maxφ,θ

〈〈
pθ(x

n
t=1:Tn

, sn,dn, znt=1:Tn
)

qφ(sn,dn, znt=1:Tn
| xni=1:Tn

))

〉
qφ

〉
pD(xn)

(3)

ELBO Objective (expanded):

L(xn1:Tn ; (θ, φ)) =
Tn∑
t=1

Eqφ(znt ,sn|xn1:Tn)[log pθ(x
n
t |znt , sn)]− λd(KL(qφ(dn|xn1:Tn)||pθ(d

n)))− λs(KL(qφ(sn|xn1:Tn)||pθ(s
n)))

−λz(KL(qφ(zn1 |xn1:Tn ,d
n)||pθ(zn1))− λz

Tn∑
t=2

Eqφ(znt−1|xn1:Tn ,d
n)KL(qφ(znt |znt−1,dn,xn1:Tn)||pθ(z

n
t |znt−1,dn)))

(4)

Time Varying KL Term (Compact):

KL(qφ(zn1 , ..., z
n
Tn |x1:Tn ,d

n)||pθ(zn1 , ..., znTn |d
n))) (5)

Time Varying KL Derivation:

KL(qφ(zn1 , ..., z
n
Tn |x1:Tn ,d

n)||pθ(zn1 , ..., znTn |d
n))) =∫

zn1

..

∫
znTn

qφ(z
n
1 |x1:Tn ,d

n)...qφ(z
n
Tn |x1:Tn ,d

n, znTn−1) log
pθ(z

n
1 , ..., z

n
Tn
|dn)

qφ(zn1 |x1:Tn ,d
n)...qφ(znTn |x1:Tn ,d

n, znTn−1)
=∫

zn1

..

∫
znTn

qφ(z
n
1 |x1:Tn ,d

n)...qφ(z
n
Tn |x1:Tn ,d

n, znTn−1) log
pθ(z

n
1)pθ(z

n
2 |zn1 ,dn)...pθ(znTn |z

n
Tn−1,d

n)

qφ(zn1 |x1:Tn ,d
n)...qφ(znTn |x1:Tn ,d

n, znTn−1)
=∫

zn1

..

∫
znTn

qφ(z
n
1 |x1:Tn ,d

n)...qφ(z
n
Tn |x1:Tn ,d

n, znTn−1) log
pθ(z

n
1)

qφ(zn1 |xn1:Tn ,dn)

+

Tn∑
t=2

∫
zn1

..

∫
znTn

qφ(z
n
1 |x1:Tn ,d

n)...qφ(z
n
Tn |x1:Tn ,d

n, znTn−1) log
pθ(z

n
t |znt−1,dn)

qφ(znt |znt−1,xn1:Tn ,dn)
=

∫
zn1

qφ(z1|xn1:Tn ,d
n) log

pθ(z
n
1)

qφ(zn1 |xn1:Tn ,dn)
+

Tn∑
t=2

∫
znt−1

∫
znt

qφ(z
n
t |xn1:Tn , z

n
t−1d

n) log
pθ(z

n
t |znt−1,dn)

qφ(znt |znt−1,xn1:Tn ,dn)
=

KL(qφ(zn1 |xn1:Tn ,d
n)||pθ(zn1)) +

Tn∑
t=2

Eqφ(znt−1|xn1:Tn ,d
n)KL(qφ(znt |znt−1,dn,xn1:Tn)||pθ(z

n
t |znt−1,dn)))

(6)

4

Figure 4. VDSM pendulum dataset sequence generation samples, 60 timesteps into the future.

Figure 5. VDSM pendulum dataset sequence action transfer samples, 60 timesteps into the future.

5

Figure 6. VDSM moving MNIST dataset action transfer, 16 timesteps into the future.

6

Figure 7. VDSM animated Sprites dataset action transfer, 8 timesteps into the future.

7

Figure 8. VDSM MUG dataset action transfer, 20 timesteps into the future.

8

Figure 9. VDSM MUG dataset action transfer, 20 timesteps into the future.

9

References
[1] N. Aifanti, C. Papachristou, and A. Delopoulos. The MUG

facial expression database. Proc. 11th Int. Workshop on Im-
age Analysis for Multimedia Interactive Services, 2010. 1

[2] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz
Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Good-
man. Pyro: Deep universal probabilistic programming. J.
Mach. Learn. Res., 20, 2019. 1

[3] L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions
as space-time shapes. IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE, 29(12), 2007.
3

[4] R. G. Krishnan, U. Shalit, and D. Sontag. Structured infer-
ence networks for nonlinear state space models. Association
for the Advancement of Artificial Intelligence, 2017. 2

[5] K. Li and J. Malik. Implicit maximum likelihood estimation.
arXiv:1809.09087, 2018. 1

[6] A.L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-
earities improve neural network acoustic models. ICML, 30,
2013. 2

[7] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in PyTorch. NeurIPS Workshop, 2017.
1

[8] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Un-
supervised learning of video representations using LSTMs.
arXiv:1502.04681v3, 2016. 1

[9] S. Tulyakov, M-Y. Liu, and J. Kautz. MoCoGAN:
decomposing motion and content for video generation.
arXiv:1707.04993v2, 2017. 3

[10] R. Zhang. Making convolutional networks shift-invariant
again. Proceedings of the 36th International Conference on
Machine Learning, 2019. 2

10

