Appendix

1. Appendix

The architecture of Self-attention Decoder is shown in
Figure 1. Since the Self-attention Decoder architecture is
permutation-invariant, we could shuffle the order of the vec-
tor and get the same result. For each vector I;([1 : k]) in
feature sequence, we embed the index ¢ into position vector
FE; with the same dimension as the feature vector I; by an
embedding operation defined below:

{E(indem,Zz) = sin(index/10000%%/°) 0

Einder,20+1) = cos(index/10000%/¢)

where index denotes the position of the feature vector in
the feature sequence, c refers to the dimensions of E', which
is the same as that of feature vector, and 2z, 2x + 1 de-
note even and odd dimension, respectively, i.e., the sin value
is added to the even dimension and the cos value is added
to the odd dimension of the feature vector. After that, the
position-embedding feature E' and the flatted input feature
I are added to obtain the fused feature F', which is location-
sensitive.

We construct four decoder layers in series to decode the
fusion feature F' and obtain the character sequence. Each
decoder layer consists of two multi-head attention modules,
i.e. a feed-forward module, where the last decoder layer
has an additional prediction module, and the multi-head at-
tention module connected by four self-attention modules.
As shown in Figure 1, each self-attention module includes
query(Q), keys(K) and values(V)s, which are obtained by
linear transformation of the self-attention module’s input.
The equations are shown below:

Q:WQXX
K=WgxX 2)
V=WyxX

where W¢, Wi and Wy, are the linear transformation ma-
trices corresponding to Q, K, and V, respectively; X refers
to the input of self-attention module. Given a query vector
QO and a key vector set K, attention mechanism computes
the similarity between the query q and all keys K;, and then
aggregating the values V; based on the similarity. So we can

N
N ~
- N
[Previous output]—

Figure 1. The overview of the Self-Attention module.

[Image feature J

calculate the output of Self-Attention as follows:

QxKT
Vi

here, dx is the dimensions of the column for () and K,
which is used to prevent the inner product of () and K from
being too large.

The output of multi-head attention modules is obtained
by connection the result of several self-attention modules
together, and the Q, K, V of each self-attention modules is
calculated by a different linear transformations. This multi-
head attention modules can be summarized as:

MultiHead(Q, K, V) = Concat(H,, Ho, Hs, Hy)
H; = Attention(QWZ2, KWK, viv))

Attention(Q, K, V) = Softmaz(YxV (3)

“)
Where ,IW; means different trainable linear transformation
matrices for each self-attention module.

The recognition process follows the order of the charac-
ters in the word, i.e., the (i + 1)-th character could be recog-
nized only after the i-th character is recognized. To address
this issue, we add a Masked operation to the first multi-head
attention module in Self-attention Decoder, which can pre-
vent the i-th character from knowing the information after
the (¢ + 1)-th character.

The second multi-head attention module is different
from the first one in that its K and V" are computed from the

fused feature F'. In this way, the prediction of each character
is able to use the whole feature extracted by CNN Encoder.

We introduce the feed-forward module, which is made
up of two linear layers and one ReLU layer, to the Self-
attention Decoder in order to provide the network with non-
linear transformations. After that, in order to speed up the
convergence, we attach an add&norm layer on each module
where add means a residual connection and norm means
Layer Normalization [1]. The first and second multi-head
attention module and their corresponding add&norm layer
consists of the masked multi-head self-attention module and
multi-head attention module, respectively.

At last, we take the output of the last decoder layer as
the input of classification module, which consists of a single
linear layer and softmax layer.

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
2

