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Abstract

In this supplementary material, we provide more imple-
mentation details of our 3DIoUMatch method coupled with
VoteNet and PV-RCNN, per-category results on ScanNet
and SUN-RGBD, and result visualizations.

1. 3D IoU Estimation Module for VoteNet

To facilitate the rejection of poorly localized proposals,
as well as guiding deduplication and test-time refinement,
we devise a new 3D IoU estimation module differentiable
w.r.t bounding box parameters for point-cloud-based IoU-
unaware detectors like VoteNet.

In detail, for each predicted bounding box ) we
wish to estimate its 3D ToU v(*) ¢ [0,1] with respect
to its corresponding ground-truth box {o* € {oW}|k =
argmax; (ToU(b™*), 0(1)))}.  VoteNet does not have inter-
mediate region proposals and only output bounding box
parameters at the end stage. Features used for bounding
box parameter regression are gathered from vote points in
a fixed-radius ball vicinity around each vote cluster, which
are unaware of the final bounding box prediction. So, dif-
ferent from implementation in IoU-Net [2] that parallel the
bounding refinement and IoU estimation, we need to do it
serially by pooling features again specifically for 3D IoU
estimation using the final predicted bounding box.

This feature pooling layer takes a bounding box as input
and should generate continuous features with respect to the
change in bounding box parameters. Existing Rol pooling
methods proposed in GSPN [7] and PointRCNN [5] and 3D
IoU module proposed in STD [6] simply set a hard crop-
ping boundary at the bounding box surface, taking the point
features inside the proposal and ignoring any points outside.
These designs have poor differentiability and cause discon-
tinuities whenever a change in the box parameters modifies
the point population inside the box, thus are not suitable for
3D IoU optimization (see Table 4).

Here, for the first time, we devise a 3D pooling layer,
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3D Grid Pooling, that is differentiable with respect to
the change in all bounding box parameters. Inspired by
RolAlign [I] in 2D object detection, we propose to con-
struct virtual grid points spanning the space of the bounding
box and their features are obtained by distance-weighted in-
terpolation from real points not restricted inside the box.

Network architecture for IoU-aware VoteNet Taking
as inputs the seed points {2;}},, predicted bounding box
b = {c,d, 8}, and a predicted label I, our 3D IoU module
estimates the largest 3D IoU between B and all ground truth
bounding boxes. Following IoU-Net [2], the IoU estimation
is class-aware.

To build a differentiable 3D IoU module, we first con-
structa D x D x D grid {g,, € R* | m € [0, D® — 1]} that
exactly span over the space of b and evenly divide its width,
length, and height. For each grid point g,,, we find its k
nearest neighbours among all seed points and interpolate
SEwifi
and d is the L2 distance. Ideally, if & is equal to the num-
ber of all seed points, then the IoU module is continuously
differentiable. Due to the computational cost, we empiri-
cally find k£ = 3 is sufficient for accurate 3D IoU estimation
with smooth gradients. We then concatenate g,, and f,,
for each grid point and form a grid feature set {[g,; fm]}-
The feature set will be pushed towards a PointNet to pre-
dict class-aware 3D IoU. A final 3D IoU selection will be
performed using the input class label.

Our JToU-aware VoteNet shares the same structure with
VoteNet[3] except for the IoU estimation module. We pro-
vide a more detailed description of the IoU estimation mod-
ule here. The IoU estimation module is appended after
the proposal generation module of VoteNet and takes the
bounding box proposals as input. For each bounding box
proposal, we create 4 x 4 x 4 virtual grid points. We ob-
tain the relative coordinates of the grid points by subtracting
the coordinates of the bounding box center. For every grid
point we find its k nearest neighbours among all seed points

k .
and interpolate their features to get f,,, = %,
=1 K

their features to get f,, = where w; =

where
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Figure 1. 3D IoU module takes inputs seed feature points and a
bounding box along with its predicted class label, and estimates
the 3D IoU between the box and its maximum overlapping ground
truth. The module constructs a 3D regular grid with D® virtual
grid points spanning over the bounding box. We then perform a 3D
grid feature pooling that applies a distance-weighted interpolation
for feature propagation from the seed points to the grid points.
Then the local coordinates of these grid points along with their
features are pushed through a PointNet to regress class-aware 3D
IoU. Finally, we use the input class label for output selection.

w; = W and d is the L2 distance. The interpolated
features of every grid point is then concatenated with the
relative coordinates and forwarded into an MLP with chan-
nel dimensions of [256+3, 128, 128, 128] to learn a new
feature. Then the features of all grid points go through a
global max pooling, after which go through another MLP
with channels [128, 128, 128, C], where C' is the number
of classes, to make the IoU prediction class-aware. Finally,
we select the per box IoU estimation by using the class label
(during training) or class prediction (during inference).

Training IoU Estimation Module To train the 3D IoU
estimation branch in both stages, we generate on-the-fly
training data via jittering the bounding box predictions, i.e.
adding Gaussian noise to the box center and size. As a way
of data augmentation, this jittering is essential for the gen-
eralization of IoU estimation to unlabeled data. We use an
L1 loss to supervise the IoU estimation module.

2. More Implementation Details for VoteNet-
based 3DIoUMatch

Training For the pre-training stage, we find that the net-
work does not converge using the same protocol as fully-
supervised VoteNet. We instead use a new protocol, where
the network is trained for 900 epochs, optimized by an
ADAM optimizer with an initial learning rate of 0.001, and
the learning rate is decayed by 0.1, 0.1, 0.1 at the 400t
600™ and 800™, respectively. We observe convergence us-
ing this protocol on all ratios of labeled data.

Inspired by IoU-Net[2], for both stages, we generate on-
the-fly training data via jittering the bounding box predic-

tions for the IoU estimation module. Specificly, we add
€size ~ N(0,(0.3d)?) to each bounding box size predic-
tion d and add €.cpierr ~ N (0, (0.3d)?) to each bounding
box center prediction ¢ to obtain Np,oposqi More training
samples. The final IoU estimation loss is the L1 loss av-
eraged over all IoU trainig samples, original predictions or
jitters. The IoU estimation loss weight is 1.

Inference As IoU-Net[?] did not release code, we imple-
mented a simple version of test-time IoU optimization.

1. We obtain the original bounding box proposals.

2. We calculate the gradients of the IoU estimation w.r.t.
to bounding box size and center, grads; e, gradeenter,
and update the bounding box size and center by adding
gradgize * A, gradeenier * A to the box size and center,
respectively, where ) is the optimization step size.

3. We repeat the second step for 7" times.

We find setting T' to 10 yields noticeable improvement
while not slowing inference speed too much. Choosing A
from the range of [Lle~*, 5¢ ~*] has similar performance.

3. More Implementation Details for PV-
RCNN-based 3DIoUMatch

We basically follow the training protocols and settings of
PV-RCNN [4]. For pre-training on small amounts of labeled
data (1% and 2%), we train ten times the original number of
epochs for the model to converge. For SSL training, we set
the batch size to 16 (8 labeled + 8 unlabeled, 8 GPUs) and
train five times the original number of epochs.

4. Overhead of the IoU module

Our light-weighted IoU estimation module brings mod-
erate overhead to the network, as shown in Table 1. The
memory reported in the second column refers to the mem-
ory consumed by training with batch size 8 on a single GTX
1080Ti GPU. The last two columns mean the time con-
sumed by a full pass (forwarding and backwarding) of a
batch of 8 on a single GTX 1080Ti GPU, training ScanNet
and SUNRGB-D respectively. Note that regardless of the
network design, there is overhead introduced by calculating
the ground truth IoU for supervision.

] Method \ Mem. (GB) \ ScanNet (s) \ SUNRGB-D (s) ‘

VoteNet 6.56 0.282 0.316
Ours 6.60 0.325 0.377

Table 1. Memory and time overhead of the IoU module.



cab bed chair sofa table door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn
VoteNet mAP@0.25 179 747 745 753 456 183 11.7 21.7 0.7 284 494 215 232 185 79.6 257 663 11.7
SESS mAP@0.25 205 751 762 764 481 200 144 194 12 300 51.8 250 300 264 822 292 723 14.1
Without IoU mAP@0.25 22.6 795 778 778 496 254 186 2777 33 414 562 274 304 536 813 285 745 188
3DIoUMatch mAP@0.25 26.6 82.6 80.9 833 521 280 199 294 3.7 450 619 292 34.1 512 857 323 828 215
VoteNet mAP@0.5 32 646 434 493 251 2.8 1.1 8.7 0.0 24 147 39 7.6 1.1 468 119 394 1.5
SESS mAP@0.5 3.7 612 480 448 295 32 2.8 8.4 02 75 192 50 122 1.8 48.7 153 40.8 2.2
Without IoU mAP@0.5 39 66.1 527 507 351 79 5.0 131 09 145 261 103 175 7.0 639 11.7 62.1 4.9
3DIoUMatch mAP@0.5 59 720 605 56.6 397 103 52 181 0.7 160 353 83 214 6.2 67.5 132 67.6 52
Table 2. Per class mAP@0.25 and mAP@0.5 on ScanNet val set, with 10% labeled data.
bathtub bed bookshelf chair desk dresser nightstand sofa table toilet
VoteNet mAP@0.25 67.8 322 394 58.5 535 8.0 1.9 14.7 3.2 20.3
SESS mAP@0.25 70.8 34.7 41.9 604 63.0 9.8 3.7 252 4.0 28.0
Without IoU mAP@0.25 75.1 33.5 43.0 59.5 76.9 6.8 5.1 33.0 3.5 34.8
3DIoUMatch mAP@0.25 75.4 37.7 45.2 642 77.0 6.0 5.7 346 4.5 394
VoteNet mAP@0.5 31.2 6.2 15.5 29.6 14.6 0.5 0.2 2.0 0.3 5.2
SESS mAP@0.5 36.7 7.2 19.2 31.8 204 0.7 0.5 7.0 0.4 7.1
Without IoU mAP@0.5 41.5 9.7 25.7 345 40.8 0.8 0.8 8.3 0.8 114
3DIoUMatch mAP@0.5 45.2 14.4 27.8 43.6 47.2 0.8 1.9 157 0.6 134

Table 3. Per class mAP@0.25 and mAP@0.5 on SUNRGB-D val set, with 5% labeled data.

5. IoU Module Comparison

As mentioned in 1, some region-based 3D detectors, e.g.
STD [6], crop the features inside a predicted bounding box
and regress the offset. To capture their core characteristics
under IoU optimization, we build a simple IoU estimation
module which only queries points inside the predicted box
and passes the queried feature points through a PointNet to
predict the 3D IoU, namely box query. In principle, the
differentiability of this module is the same as that in STD,
which doesn’t release their code and misses the IoU opti-
mization step in their paper. For a fair comparison, we train
another loU-aware VoteNet with box query as the IoU esti-
mation module and show the comparison between it and our
proposed method on the full set of ScanNet and SUN RGB-
D. From the results in Table 4, we prove that our method is
more effective on both IoU-guided NMS and IoU optimiza-
tion than box query.

We provide more explanation on why an IoU estimation
network design like that in STD[6] is less effective in loU
estimation and is not differentiable. Given a bounding box
proposal, STD concatenates the canonized coordinates and
features of the points inside the bounding box to form new
features of the points. Therefore, the new feature of a point
/! can be denoted as a function of the point coordinates p,
the original point feature f, the bounding box center ¢ and
the bounding box heading angle 6. Then STD voxelizes the
bounding box and sample points in each voxel to produce
the voxel feature f,. The process of producing the voxel
feature from points in voxels consist of no other parameters
except from the point features { f/} and point coordinates
Pi, S0 f, is still a function of {f;}, {p;},c, 0. As all voxel

features are flattened and fed to an MLP, which outputs the
final IoU, we can conclude that the IoU estimation is not
differentiable w.r.t. bounding box size.

We also argue that for VoteNet, since the number of seed
points with features are small (1024), box query methods
may have difficulty querying points inside a bounding box,
especially if a bounding box is too small. Our method, in-
stead won’t suffer from this as we are not confined to points
inside the bounding box.

Although STD didn’t release code, we still implemented
an IoU estimation module according to the paper for better
comparison. However, some issues need to be stated. First,
since the backbone of STD is very different from VoteNet,
the comparison between IoU estimation module alone is in-
herently problematic. Second, STD aims at outdoor object
detection, where the task is slightly different. Third, we
adopted most of the parameters of STD in the paper, but
changed number of voxels (to 27) and number of points
sampled per voxel (to 6) due to memory concerns and the
small number of seed points in VoteNet. The results in Ta-
ble 4 show the better performance of our [oU module. We
also observe serious overfitting using the STD IoU module,
suggesting that it may not be suitable for our problem.

6. Why not Supervise Votes and Objectness in
VoteNet?

As we mentioned, we supervise all VoteNet loss terms
on unlabeled data except for vote regression loss and object-
ness binary classification loss. As we observe, supervising
votes or objectness with pseudo labels leads to degrading
performance. The main reason is that by rigorous filtering
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Figure 2. Qualitative results on ScanNet, with 10% labeled data. Here green bounding boxes have an IoU > 0.25 while red bounding
boxes are with an IoU < 0.25.
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Figure 3. Qualitative results on SUNRGB-D, with 5% labeled data.



ScanNet SUN RGB-D
Method mAP mAP mAP mAP
@0.25 | @0.5 | @0.25 | @0.5
Obj-NMS [3] 57.84 | 35.99 | 58.01 | 33.44
Box query
ToU-NMS only 57.56 | 37.07 | 58.16 | 34.81
Box query
ToU-NMS + Optim. 57.62 | 37.17 | 58.19 | 34.90
STD
ToU-NMS only 57.81 | 36.21 | 58.21 | 34.76
STD
ToU-NMS + Optim. 57.85 | 36.21 | 58.21 | 34.75
Ours
ToU-NMS only 57.92 | 37.01 | 58.82 | 36.22
Ours
IoU-NMS + Optim. 58.46 | 37.43 | 59.11 | 36.71

Table 4. Comparison of our IoU module with box-query on Scan-
Net 100% and SUN RGB-D 100% .

and deduplication we can only be highly confident of a true
object being close to a pseudo bounding box, but we are not
sure whether or not there is a true object where there are
no pseudo bounding boxes nearby. If we supervise object-
ness on unlabeled data with the pseudo labels the same way
as VoteNet, it’s not difficult to imagine the network would
be more and more biased on detecting objects. In Table
5, our experiments on ScanNet 10% and SUNRGB-D 5%
show that the performance suffers a drop after supervising
objectness on unlabeled data.

Vote prediction is an unique component of VoteNet. For
a point, the label for its vote is the center of the object it
belongs to. To generate pseudo vote labels, the straightfor-
ward way is to count every point inside a pseudo bounding
box as a vote. However, since this pseudo vote label set is
also far from complete, we face a similar problem supervis-
ing with it. In Table 5, our experiments on ScanNet 10%
and SUNRGB-D 5% also show that the performance drops
after supervising vote prediction on unlabeled data.

ScanNet 10% | SUNRGB-D 5%
Method mAP | mAP | mAP mAP
@0.25 | @0.5 | @0.25 @0.5

3DIoUMatch 47.2 28.3 39.0 211
+vote sup.

on unlabeled | 424 | 283 | 379 20.9
+obj. sup.

on unlabeled

40.1 26.0 38.2 20.4

Table 5. Objectness & vote supervision on unlabeled data using
pseudo-labels.

7. Per-class Evaluation

We report per-class average precision on ScanNet with
10% labeled data and SUNRGB-D with 5% labeled data,
respectively. The bold numbers are the highest per class.
The results in Table 2, 3 show that our method improves
the average precision on nearly all classes over SESS. Our
3DIoUMatch also has better performance on most classes
than the without-IoU version.

8. Qualitative Results

We show the qualitative results on ScanNet val set with
10% labeled training data, Figure 2 and on SUNRGB-D val
set with 5% labeled training data, Figure 3. For the results
of our method, SESS and VoteNet, green bounding boxes
are the predicted bounding boxes whose IoU > 0.25, and
the red bounding boxes are those with an IoU < 0.25. As
can be seen in both figures, our method give more accurate
predictions and significantly reduces the number of false
positives.
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