Bi-GCN: Binary Graph Convolutional Network
Supplementary Material

1. Vector Binarization

Here, we introduce the vector binarization approach [2],
which is the basis of our binarization process. Consider-
ing that there exists a vector V' = (4, V3, ..., V4), this ap-
proach aims to obtain its binarized approximation with a
binary vector Vg = {—1,1}" and a real-valued scalar «,
such that V' =~ aVp. The approximation can be formulated
as

Jo(Vg,a) = ||V — aV3||5. (1)

By minimizing the above optimization problem, the optimal
solution can be computed via

Vi = sign(V), (@)

. 1
a* = 1Vl G

where sign(-) is the signum function which extracts the
sign of a real number.

Then, if there exists another vector I = (11, Is, ..., I),
the inner product of I and V' can be approximated via

I-Va~aol -V,)

where - denotes the vector inner product. If a further bi-
narization to the vector [is desired to compress this in-
ner product, it can be achieved via [- V ~ aflp - Vg,
where Ip is a binary vector and [is a scalar. If we
want to minimize the straightforward approximation error
|I-V —aplp-Vp|and compute the optimal solution to this
optimization problem, an optimal solution, |/ - Vp| = 1
and a8 = sign(Ip - Vg)I - V, can easily be calculated.
Unfortunately, this solution possesses a strong dependency
on the value of [- V and it tends to lose large amount in-
formation of the original vectors. To alleviate this issue, the
approximation problem of the inner product I - V' is defined
as

Jip(a7ﬁ7IBavB) = HI® V- OéﬁIB © VB||§7 (5)

where ©® denotes the element-wise product. Similar to Eq.
1, the optimal solution can be calculated via

1
a* = 2|V, ©

1
5= i,)
Vi = sign(V), ®)
Iy = sign(I).)

Then, Eq. 4 can be reformed to
I Vxao'p Iy Vg (10)

Eq. 10 is essentially the result of binarizing both I and V'
according to the vector binarizing algorithm.

2. More Results

Here, we also present the results on CiteSeer [3] for the
transductive learning task, OBGN-Products [1] for the in-
ductive learning task and ModelNet40 [5] for point cloud
classification task to further verify the effectiveness of
our binarization method. The same data division strat-
egy as Planetoid [6] for CiteSeer, OGB benchmarks [1]
for OGBN-Products and DGCNN [4] for ModelNet40 are
adopted.

Table 1. Transductive learning results on CiteSeer. (M.S., D.S,
and C.O. are the abbreviations of Model Size, Data Size and Cycle
Operations, respectively.)

Networks CiteSeer
Accuracy M.S. D.S. C.0.
FastGCN | 68.8£0.6 927.25K 40.0M 7.90e8
SGC 71.9+£0.1 86.79K 40.0M 7.32¢7
GAT 72507 927.8K 40.0M 791e8
GCN 709 £0.5 927.25K 40.0M 7.90e8
Bi-GCN | 68.8+0.9 29.25K 1.48M 1.31e7

As is shown in Table 1, our Bi-GCN can achieve ~60.1x
faster inference speed and ~31.7x lower memory consump-
tion than the uncompressed GNNs, with a comparable per-
formance, similar to the results on the other two citation
networks.

Table 2 shows the results of OGBN-Products, which
is a medium-scale dataset in the OGB benchmarks with
2,449,029 nodes and 61,859,140 edges. The benchmark

Table 2. Accuracy on OGBN-Products (averaged over 10 runs). [6] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov.
(D.S. and C.O. are the abbreviations of Data Size and Cycle Opera- Revisiting semi-supervised learning with graph embeddings.
tions. GraphSAINT* corresponds to GraphSAINT with the SAGE In ICML, pages 40-48, 2016.

aggregation function.)

Reddit
F1-micro D.S. C.0.

GraphSAGE 78.7+0.4 93423M 2.03ell
Bi-GraphSAGE | 76.8 0.3 38.54M 2.45¢10

GraphSAINT 791+0.3 93423M 2.03ell
Bi-GraphSAINT* | 77.5+04 38.54M 2.45e10

Networks

results of GraphSAGE and GraphSAINT (with SAGE ag-
gregation) are employed as our baselines (reported by OGB
Team). The proposed binarization methods is applied to
these two GNNss to generalize their binarized version. The
results indicate that, our binarized GNNs can still achieve
~24x data compression and ~8x inference speedup on this
challenging dataset, with comparable results.

Table 3. Results on ModelNet40 (1024 points).

Methods Accuracy

DGCNN 92.89
Bi-DGCNN 88.29

Table 3 shows the results on ModelNet40. Note that
DGCNNJ[4] is selected as the baseline method because it
is a popular GNN on point cloud classification task. Bi-
DGCNN is constructed by our binarization methods. The
results demonstrate that our binarized GNN is still effective
for this graph-classification tasks.

References

[1] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for machine
learning on graphs. In NIPS, 2020.

[2] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and
Ali Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. In ECCV, pages 525-542,
2016.

[3] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,
Brian Galligher, and Tina Eliassi-Rad. Collective classifica-
tion in network data. Al magazine, 29(3):93-93, 2008.

[4] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog), 38(5):1-12, 2019.

[5] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
IEEE,CVPR, pages 1912-1920, 2015.

