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This supplementary material provides additional details
that are not included in the main text due to space constraint.
In Section 1, we provide details about the scaling parameter
that augments the template model. In Section 2, we discuss
how subdivision may affect our method and downstream
applications. Section 3 provides implementation details for
single-view model regression, including the model architec-
ture and training procedure. Section 4 presents further ex-
ploration of the learned shape space and its relation with the
avian phylogeny. Section 5 provides 3D evaluation on the
main method. Finally in Section 6, we include more qual-
itative examples from species-specific captures and single-
view regression.

1. Local Scaling Parameter: κ
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Figure 1: Part Scaling. We augment the template model
with two local scaling parameters. (A) is the default, and
(B) is with 2x scaled beak and tail.

Our method assumes accurate alignment of the template
model to annotated instances. This alignment is more diffi-
cult if the new species’ beak or tail has very different length
than the template’s. Similar to [3], we augment the tem-
plate model with a local scaling parameter, κ ∈ R2, that
scales the beak and the tail independently at their local co-
ordinates, and along the longitudinal direction. Uniform
scaling alone does not capture high fidelity details, but the
scaled beak can be further refined by the deformation steps
(main text Section 3.3 and 3.4).

2. Model Subdivision Level
Different subdivision levels can be applied to the tem-

plate articulated mesh. Previous methods demonstrate ben-
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Figure 2: Subdivision Level. We learn our models at subdi-
vision level 0, and create a smoother version by subdividing
the surface once. Shown here are the mean shape of AVES
at two different subdivision levels.

efits of using subdivided surface [1, 4]. To achieve faster
computation, we use no subdivision (level 0) during the
optimization, but subdivide the learned models to create a
smoother version after learning. That is, we learn our mod-
els at level 0, and propose using them at level 0 or 1. Com-
paring the non-subdivided and the subdivided mean shape
of AVES in Figure 2, we see that subdividing [14] the sur-
face once does not destroy important structures learned at
level 0, such as the crest, the beak and the overall body
shape, but improves the realism in the parts that are pur-
posefully designed by the artist for subdivision, such as the
eyes and the wing elbows.

3. Regressing from an RGB Image

In this part we provide more details about the model
we used and the training strategy. Our model is based on
the popular HMR architecture [9]. More specifically we
use the same ResNet50 [7] backbone and make some small
modifications in the decoder. Instead of predicting the 85
SMPL and camera parameters we predict the parameters of
the AVES body model together with the camera translation.
We follow SPIN [13] and use the 6D representation for rota-
tions [18] and a full perspective camera model. Since there
is less variation in the pose of birds compared to humans
we use only a single iteration of the iterative regressor. The
total loss is
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L = λ1 ∗ Lkeypoints + λ2 ∗ Lsilhouettes
+ λ3 ∗ Lβ + λ4 ∗ Lθ + λ5 ∗ Lα

(1)

where Lkeypoints is an L1 loss on the reprojected 2D
keypoints, Lsilhouettes an L2 loss on the reprojected key-
points and Lβ , Lθ and Lα L2 regularization losses on the
shape, pose and bone length parameters respectively. For
the shape parameters, Lβ = ||β||22 whereas for the pose and
bone length parameters Lθ = ||θ−θ̂||22 and Lθ = ||α−α̂||22,
The mean θ vector, θ̂, is the same as the one used in [2],
whereas the mean bone length vector is a vector of ones.

For the loss weights we used λ1 = 1, λ2 = 2, λ3 =
0.001, λ4 = 0.05 and λ5 = 0.1.

We used the ground truth boxes to crop the images
around each bird and then resized the crops to 256 × 256.
The size of the boxes was rescaled by a factor of 1.1 as
in CMR [10]. At training time we used a combination of
random augmentations. We randomly rescaled and trans-
lated each the ground truth box, applied random rotations
and flipping, and also performed color jittering in the RGB
image.

We trained the neural network with a batch size of 64
images using the Adam optimizer [12] with a learning rate
of 0.0001 and 0.0001 for weight decay. We trained for a
total of 500 epochs.

We show additional regression results and comparisons
in Figure 7. Some typical failure cases are shown in Fig-
ure 8.

4. Shape Space Analysis
In biology, morphometrics uses statistical shape analy-

sis to study the variation and patterns of body shape among
species. Changes in shape over evolutionary time reflect
both the relatedness among species (i.e. the phylogeny) as
well as changes introduced by random mutation or selective
pressures. Analyzing shape in the context of the phylogeny
can reveal whether species have similar forms because of
their relatedness or because of convergent evolution. Anal-
yses can also identify species or groups that have undergone
directional selection, arriving at a very different morphol-
ogy than that of the common ancestor of related species.

4.1. Ancestral state reconstruction

We start with a complete, dated phylogeny [8], which
was constructed using all 9,993 living bird species and cal-
ibrated in time using fossil data. From this phylogeny, we
extract the tree for the subset of the 17 species whose shape
we capture (shown in Figure 3). After capturing the shape
of each individual, we visualize the shape space coefficients
for all individuals using a 2D UMAP embedding (Figure
5a of the main text). We then use Rphylopars [6, 5] to
reconstruct the ancestral state of the branch points in the

phylogeny assuming a Brownian motion model of trait evo-
lution for the two embedding coordinates. We perform an
identical process on the UMAP embedding of the learned
perceptual features (Figure 5b of the main text).

Figure 3: Phylogeny of captured species. Extracted from
a complete, dated avian phylogeny [8].

Config. Features lambda p-value

dims = 2, nn = 16
AVES Shape PCs 0.97± 0.10 0.014
ResNet50 0.45± 0.25 0.29

dims = 2, nn = 75
AVES Shape PCs 1.00± 0.01 0.0003
ResNet50 0.10± 0.16 0.81

dims = 7, nn = 16
AVES Shape PCs 0.99± 0.02 < 0.0001
ResNet50 0.18± 0.20 0.60

dims = 7, nn = 75
AVES Shape PCs 0.97± 0.05 0.0002
ResNet50 0.34± 0.13 0.23

Table 1: Phylogenetic signal and likelihood ratio tests
using 2D and 7D UMAP embeddings. UMAP parame-
ters include dims, the number of embedding dimensions,
nn, the number of neighbors (lower captures more lo-
cal structure, higher captures more global structure), and
min dist, the minimum allowed distance in the embed-
ding between two samples. We set min dist = 0.9 for
all experiments. P-values are for likelihood ratio to tests
for phylogenetic signal assuming a star phylogeny as the
null hypothesis. All values are mean ± standard deviation
across 100 replications.



4.2. Phylogenetic signal of shape and appearance
traits

To calculate the phylogenetic signal of shape space co-
efficients vs. learned perceptual features, we take the
first 256 shape coefficients and generate a 7-dimensional
UMAP embedding (with parameters min dist = 0.9 and
n neighbors = 16). We extract learned perceptual fea-
tures from a ResNet50 embedding network, which is trained
on CUB using Proxy-Anchor loss and outputs 512 features
(trained network weights are provided by [11]). We then
generate another 7-dimensional UMAP embedding from
these perceptual features with the same UMAP parameters.
The 7D shape and perceptual features serve as “traits” from
which we calculate Pagel’s lambda [15, 16, 17]. Because
UMAP is a stochastic algorithm, Table 1 of the main text
presents the mean and standard deviation across 100 em-
bedding replications with different random initializations.

For each replication, we also calculate the p-value for
a likelihood ratio test comparing the probability of the ob-
served lambda given the avian phylogeny versus a “star”
phylogeny where all species’ branches originate from a sin-
gle common ancestor node and lambda is zero (i.e. a tree
where all species are equally related). In Table 1 of the main
text, we report the mean of these p-values.

We perform the same analysis using various combina-
tions of UMAP parameters and find identical results. We
try embedding in either 2 or 7 dimensions and we try two
values for the n neighbors parameter, which governs fi-
delity to local versus global structure (we try 16 and 75, a
quarter of the dataset; lower captures more local structure,
higher captures more global structure). Results are in Ta-
ble 1.

5. Evaluating on 3D data

One major obstacle in 3D animal reconstruction is the
lack of large scale 3D benchmarks. Usually the accuracy
of different methods is measured using 2D metrics such as
keypoint or silhouette reprojection errors, which may not
reliably reflect the accuracy of the 3D shape reconstruction.

To evaluate our method, we additionally acquire 6 dif-
ferent toucan meshes from the internet to render a synthetic
dataset for quantitative 3D evaluation. The 6 toucan meshes
are from different artists, with different shapes, poses and
realism; they simulate different instances of the same cat-
egory in our experiment. We create 5 sets of images, with
each set consisting of one random view per instance, and
average results over the 5 sets. Because we only have 6
samples per set, we avoid obscure frontal views. We render
all annotations and assume no occlusions.

We run our method on the rendered dataset. In Figure 4
we can see an example of this process. For evaluation, we
rigidly align the reconstruction with the ground truth, and

Figure 4: Toucan experiment. Gray: toucan mesh data.
Color: from left to right are the ground truth rendering, ini-
tial alignment, and final reconstruction.

compute 3D keypoint distances and scan-to-mesh distances
to the ground truth meshes. Table 2 shows the results of
the quantitative evaluation. All numbers are expressed in
terms of percentage of each toucan’s body length, measured
from bill tip to tail tip. We can see that each additional step
(part scaling, adding mean per-species offsets, and identity-
specific deformation) improves the performance over the
previous level.

Metrics alignment +part scaling +dv +dv+Vβ(i)

3D keypoints 9.07% 8.31% 7.59% 7.37%
scan-to-mesh 15.33% 6.48% 5.14% 4.96%

Table 2: Quantitative evaluation on toucan data. Num-
bers are averaged distances expressed as percentage of the
body length (the lower the better).

6. More Examples
We present more reconstruction examples for:

• Species-specific capturing (Figures 5 and 6).

• Regressing AVES parameters from a single RGB im-
age (Figures 7 and 8).



6.1. Results of Species-specific Capturing

Figure 5: Examples of species-specific captures of the 7 species that are not visualized in the main text. Each row depicts
reconstructions using a particular species-specific model. Each triplet includes the input image, the reconstructed mesh and
the reconstructed mesh from a novel viewpoint.

Figure 6: Failure cases. First row are typical examples that fail pose alignment (Sec. 3.2) and are not included in the
deformation steps (Sec. 3.3-3.4). The bottom two rows are failure results from the deformation steps. Failure modes include
perspective foreshortening, unrealistic deformation, and failing to capture more intricate details.



6.2. Regression using AVES

Figure 7: Qualitative comparison of regression-based methods. Gray: Reconstruction by CMR [10]. Pink: Baseline
(ABM) [2]. Blue: Ours (AVES).

Figure 8: Failure cases of our regression method. Typical examples of failure modes are unusual poses, extreme articulation
(open wings) and articulation outside the model space (open beak).
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