
Appendix

A. Examples to validate the theoretical analysis

We first provide a number of intuitive examples to support our theoretical analysis in Section 3. For
this purpose, we create redundant layers in several benchmark structures by manually increasing
the number of filters in certain layers. We use a popular layer-adaptive filter ranking criterion, i.e.,
Taylor expansion, to prune the least important filters across all layers as the baseline. The Taylor
expansion approach has been proved in their paper to have better performance than a number of
other widely used filter ranking criteria, such as minimum weight, mean activation, and APoZ. We
compare the performance of the baseline with randomly pruning filters in the layer with the most
number of filters. We use progressive pruning for demonstration so that the performance of both
approaches can be continuously observed. We use AlexNet on CIFAR-10 and VGG-16 on Birds-200
as the examples. For AlexNet, we increase the number of filters in the third and fourth convolutional
layers from 382 and 256 to 1536 and 2048, respectively. For VGG-16, we increase the number of
filters in the ninth and twelfth convolutional layers from 512 to 2048, respectively. We prune 10 and
50 filters for AlexNet and VGG-16 in each iteration and fine-tune the remaining networks for 500
mini-batches with a learning rate of 1e−4.

The performance comparison of both approaches are presented in Fig. 1 to Fig 4. It is obvious that
for all four experiments, even simply randomly pruning filters from the layer with the most number
of filters outperforms pruning the least important filters ranked by a popular criterion, i.e., Taylor
expansion, across all layers. These results validate our theoretical claim that if a layer has much
higher redundancy than others, randomly pruning filters in that layer outperforms pruning the least
important filters across all layers.
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Figure 1: Performance comparison between random pruning in the layer with the most filters and pruning the
least important filters ranked by Taylor expansion across all layers (AlexNet, number of filters in the third
convolutional layer increased to 1536).
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Figure 2: Performance comparison between random pruning in the layer with the most filters and pruning the
least important filters ranked by Taylor expansion across all layers (AlexNet, number of filters in the fourth
convolutional layer increased to 2048).

In the previous experiments, we manually increase the number of filters in certain layers of two
benchmark architectures, i.e., AlexNet and VGG-16. Here we show that for some real benchmark
architectures (without manual operation on the number of filters in the convolutional layers), our
theoretical claim still holds.
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Figure 3: Performance comparison between random pruning in the layer with the most filters and pruning the
least important filters ranked by Taylor expansion across all layers (VGG-16, number of filters in the ninth
convolutional layer increased to 2048).
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Figure 4: Performance comparison between random pruning in the layer with the most filters and pruning the
least important filters ranked by Taylor expansion across all layers (VGG-16, number of filters in the twelfth
convolutional layer increased to 2048).

We use AlexNet as an example, with the same pruning configurations as the previous experiments.
We compare the following three strategies: (1) pruning the least important filters across all layers,
ranked by Taylor expansion (baseline), (2) randomly pruning filters in the layer(s) with the most
number of filters, and (3) pruning the least important filters in the layer(s) with the most number of
filters, ranked by Taylor expansion. The results are presented in Fig. 5. We observe that both strategy
(2) and (3) show better performance compared to the baseline. The performance are similar when
pruning filters in the layer(s) with the most filters with different filter selection strategies (random or
least important). These results are consistent with the conclusion in the theoretical analysis section,
which indicates that pg ≤ pηr ≤ pη .
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Figure 5: Performance comparison between pruning the least important filters ranked by Taylor expansion across
all layers, random pruning in the layer with the most filters, and pruning the least important filters in the layer
with the most filters.

For more sophisticated architectures that contain less redundancy, such as ResNet, using the number of
filters as the criterion for redundancy measurement is not the best choice (see Section 6.4). However,
with a well designed metric to measure the layer redundancy, we show that pruning the least important
filters in the layer(s) with larger redundancy can still outperform pruning the least important filters
across all layers with different filter selection strategies (see the experiment section).
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B. Progressive pruning results

Because progressive pruning usually takes much more time than single-shot pruning, we validate the
performance of our approach with AlexNet on the CIFAR-10 dataset. We re-implement all of the
methods with the same configuration. We prune 10 filters in each iteration and fine-tune the remaining
network for 500 mini-batches with a learning rate of 0.0001. During experiments, we discover that
as more filters are removed, there exists less redundancy in the graphs. Slightly increasing γ results
in better performance. In our experiments we set γi+1 = γi × 1.01 at each time step i. We plot the
accuracy after each step of pruning and fine-tuning, in terms of the number of filters, parameters, and
FLOPs pruned from the original network.

We first pre-train an AlexNet on the CIFAR-10 dataset and achieve an accuracy of 76.67%. Results in
Fig. 6 show that our approach outperforms other methods when reducing the same number of filters
or parameters. For example, when pruning 600 (out of 1152) filters from AlexNet, we achieve an
accuracy of 69.85%, while the highest performance among the other method is 63.89% (Taylor). In
terms of FLOPs, our approach also achieves better performance than other methods.
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Figure 6: Progressive pruning results of AlexNet on CIFAR-10.
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