
Supplementary Material for “Data-Uncertainty Guided Multi-Phase Learning
for Semi-Supervised Object Detection”

1. Visualization of Label Noise Overfitting Problem
We select some images to further explain the label noise overfitting problem. The examples are in Fig. 1. In the first

case, the supervised model mislabels the aeroplane as a car, and we notice that the semi-supervised model trained with this
pseudo label detects one more car that does not exist. In the second case, the supervised model thinks a part of the iron mesh
is a person. This may be an accident mistake. However, in the results from the semi-supervised model, more parts of the
iron mesh are detected as persons. The same thing also happens in other cases. The noisy pseudo labels generated by the
FS model are regarded as the correct ones by the SSOD model. The SSOD then overfits to these noisy labels, a nature of
deep learning neural networks. In the test stage, the SSOD model just tries to intimate the noisy labels used for training, thus
generates more similar mistakes. These examples validate the label noise overfitting problem.

Figure 1: Examples to explain the label noise overfitting problem. The first row is pseudo labels from supervised model,
and the second row is from semi-supervised model (baseline method). Because of the label noise overfitting problem, pseudo
labels from the semi-supervised model contain more similar mistakes.

Because of the label noise overfitting problem, the detector is easy to concentrate on difficult images with more noise and
uncertain regions where groundtruth labels are missed, while ignoring easy images and certain regions. Therefore, at image
level, we propose a multi-phase learning method guided by uncertainty based image selection to adopt multiple models
handling easy and difficult images separately; at region level, we present a region uncertainty based RoI Re-weighting
strategy to further guide the SSOD training and force the model into more certain regions.

2. Quantitative Results
2.1. Extensive Comparison with Existing Methods

To evaluate our method more comprehensively, we perform more experiments for SSOD on ResNet101 [2] based Faster
RCNN [8] and SSD512 [6], two more complicated models compared to ResNet50 based Faster RCNN and SSD300. The
more extensive results are listed in Tab. 1 and Tab. 2.

For PASCAL VOC [1], we observe that our method improves the mAP of the baseline method by 3% on ResNet101 based
Faster RCNN, from 76.6% to 79.6%, which is consistent with results on ResNet50. This demonstrates that our method can
be applied to detectors with different backbones and validates the efficiency of our method. Compared to 78.6% mAP with
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Table 1: Semi-supervised Detection Results on PASCAL VOC 2007 test vs. current SSOD methods and fully-supervised
results trained on VOC07 or VOC0712. (L: labeled data, Un: unlabeled data.)

Model Backbone Method L Un mAP

Faster
RCNN

ResNet50

FS VOC07 - 74.8
Baseline VOC07 VOC12 75.6
DD [7] VOC07 VOC12 76.0

ours VOC07 VOC12 78.6
FS VOC0712 - 81.2

ResNet101

FS VOC07 - 76.1
Baseline VOC07 VOC12 76.6

DD VOC07 VOC12 76.9
ours VOC07 VOC12 79.6
FS VOC0712 - 82.2

Model Backbone Method L Un mAP

SSD300

VGG16
[9]

FS VOC07 - 70.2
Baseline VOC07 VOC12 71.8
CSD [3] VOC07 VOC12 72.3
ISD [4] VOC07 VOC12 73.3

ours VOC07 VOC12 74.5
FS VOC0712 - 77.2

SSD512

FS VOC07 - 73.3
Baseline VOC07 VOC12 74.8

CSD VOC07 VOC12 75.8
ISD VOC07 VOC12 76.4
ours VOC07 VOC12 77.9
FS VOC0712 - 79.6

Table 2: Semi-supervised detection Results on COCO minival vs. current SSOD and FSOD results.

Backbone Method L Un AP AP50 AP75 APS APM APL

ResNet50

FS co-35 - 31.3 52.0 33.0 17.7 34.2 40.0
DD co-35 co-80 33.1 53.3 35.4 17.7 36.1 43.4
ours co-35 co-80 34.8 55.1 37.2 19.9 37.8 45.4

ours + DD co-35 co-80 35.2 55.7 37.6 20.5 38.2 45.6
FS co-115 - 37.4 58.1 40.4 21.2 41.0 48.1
DD co-115 co-120 37.9 60.1 40.8 20.3 41.6 50.8

PL [10] co-115 co-120 38.4 59.7 41.7 22.6 41.8 50.6
ours co-115 co-120 40.1 60.4 43.7 23.6 43.7 51.4

ours + DD co-115 co-120 40.3 61.0 43.9 23.9 44.0 51.5

ResNet101

FS co-35 - 32.7 53.4 35.0 17.1 36.2 42.7
DD co-35 co-80 34.5 55.7 36.7 19.1 38.8 45.2
ours co-35 co-80 36.4 56.5 39.2 19.5 40.1 47.7

ours + DD co-35 co-80 36.6 56.8 39.4 20.1 40.3 48.0
FS co-115 - 39.4 60.1 43.1 22.4 43.7 51.1
DD co-115 co-120 40.1 62.1 43.5 21.7 44.3 53.7
ours co-115 co-120 42.2 62.5 46.1 25.0 46.7 54.5

ours + DD co-115 co-120 42.3 62.7 46.3 25.3 46.7 54.9

the ResNet50 backbone, ResNet101 achieves a higher mAP and has more potential for practical application. For SSD512,
our method also manages to produce better predictions compared to state-of-the-art methods on one stage detectors and our
method with SSD300. It is noticeable that the gap between our method (77.9%) and the upper bound by fully-supervised
learning on VOC0712 (79.6%) is only 1.7%, which further proves the strong ability of our method.

For COCO [5], we observe that our method persistently improves the mAP on objects with different scales of size, which
demonstrates the strong generalization ability of our method. For different backbones or different data splits, our method
consistently achieves better performance compared to existing SSOD methods. The most prominent phenomenon is that
our method achieves 20.5% on small objects with ResNet50 based Faster RCNN for co-35/80 split, while the corresponding
fully-supervised upper bound is just 21.2%. The gap is only 0.7%. This demonstrates that our method learns knowledge
within unlabeled images quite sufficiently, especially for some certain data.

2.2. Image Difficulty Distribution

With recall/precision metric we propose in the original paper, the fraction of easy images is calculated and listed in Tab
3. For ResNet50 based Faster RCNN on PASCAL VOC, the fraction of easy images is 54%, which is consistent with the
result in our original paper where 50% or 60% easy images produce a higher mAP. If we combine our method with DD or
use ResNet101 as the backbone, the quality of pseudo labels is higher, but we find that the easy data ratio is still close to
50%. For more complicated datasets like COCO, the proportion of easy images is still approximately 50%. This confirms
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Table 3: Fraction of easy data proportion on PASCAL VOC and MS COCO

Dataset Model Backbone DD Easy Data Proportion

PASCAL VOC Faster RCNN
ResNet50 54%

X 61%

ResNet101 59%
X 64%

MS COCO Faster RCNN
ResNet50 46%

X 53%

ResNet101 50%
X 56%

Figure 2: Comparative examples on easy images. The first row is from the baseline method, the second row is from the
phase 1 model, the third row is from the phase 2 model, and the fourth row is from the phase 0 ∼ 2 model. The phase 1 model
performs the best on these easy images, while the baseline model and the phase 2 model concentrates on difficult knowledge
and makes mistakes on easy images.

that without any prior knowledge about the unlabeled dataset, 50% is a good estimation of easy data.

3. Qualitative Results
3.1. Overall Visualized Results

Fig. 2 and Fig. 3 shows the visualized results of baseline methods and our methods on several easy or difficult images.
For easy images, we observe that the common points among them are that the objects within them are usually large and

clear. The features for those objects are also obvious and they are not easy to be confused with other categories. We find
that the detector from the first phase performs the best because they are trained with only easy unlabeled images and excel
in easy knowledge. The baseline method and the second phase model both detect some extra objects that do not exist. This
is because these two models are trained with all unlabeled images and focus on difficult knowledge. They thus keep a
high vigilance and perform prediction even the corresponding region is only a little similar to those objects, such as the right
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Figure 3: Comparative examples on difficult images. The first row is from the baseline method, the second row is from
the phase 1 model, the third row is from the phase 2 model, and the fourth row is from the phase 0 ∼ 2 model. The phase 2
model performs the best on these difficult images, while the phase 1 model concentrates on easy knowledge and is not able
to detect some confusing objects.

’bottle’ in the third case. They are also easy to detect parts of the objects, such as the first and the fifth case. These images
demonstrate that the model from the first phase experts in easy knowledge. After ensembling, the confidence scores of
those redundant predictions are lowered down and they are not distinct in the final prediction.

For difficult images, we find that the number of objects within them is a little large, or they contain some small and unclear
objects. Some objects are easy to be confused with other categories or the background category. For example, the clothes in
the third case look like a person, and the right small person in the fifth case is hard to distinguish from the environment. For
these images, the second phase model is the best. The first phase model either makes some confusion or is not able to detect
some objects. These images illustrate that the model from the second phase learns difficult knowledge well.

After ensembling, the model takes the advantage of all models thus is suitable for both easy and difficult images. Therefore,
our method achieves a better result compared to the baseline method.

3.2. Visualized Results for RoI Re-weighting

We list more examples in Fig. 4. We observe that our method also manages to detect uncertain regions where groundtruth
labels are miss-annotated, such as the middle person for the first case, the bottles in the second case, the right cow in the
third case, the right person in the fourth case, and the left dog in the fifth case. Weights for these regions are reduced and
incorrect gradient information deriving from uncertain regions is less likely to negatively affect the detector.

From Fig. 5, we observe that with RoI Re-weighting, our model is able to detect more confusing and difficult objects
compared to the model without RoI Re-weighting. This is just because that RoI Re-weighting helps the model avoid uncertain
regions. Our model is less guided by uncertain and incorrect knowledge and is thus able to detect more difficult objects.
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detector is able to handle more confusing objects.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778, 2016. 1

[3] Jisoo Jeong, Seungeui Lee, Jeesoo Kim, and Nojun Kwak. Consistency-based semi-supervised learning for object detection. In
Advances in neural information processing systems, pages 10759–10768, 2019. 2

[4] Jisoo Jeong, Vikas Verma, Minsung Hyun, Juho Kannala, and Nojun Kwak. Interpolation-based semi-supervised learning for object
detection. arXiv preprint arXiv:2006.02158, 2020. 2

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick.
Microsoft coco: Common objects in context. In European conference on computer vision, pages 740–755. Springer, 2014. 2

[6] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single
shot multibox detector. In European conference on computer vision, pages 21–37. Springer, 2016. 1

[7] Ilija Radosavovic, Piotr Dollár, Ross Girshick, Georgia Gkioxari, and Kaiming He. Data distillation: Towards omni-supervised
learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4119–4128, 2018. 2

[8] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Advances in neural information processing systems, pages 91–99, 2015. 1

[9] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 2

[10] Peng Tang, Chetan Ramaiah, Ran Xu, and Caiming Xiong. Proposal learning for semi-supervised object detection. arXiv preprint
arXiv:2001.05086, 2020. 2

5


