
Dense Contrastive Learning for Self-Supervised Visual Pre-Training
Supplementary

A. Implementation Details

Dense projection head. In our implementation, the dense
projection head consists of adaptive average pooling (op-
tional), 1 × 1 convolution, ReLU, and 1 × 1 convolution.
Following [1, 2], the hidden layer’s dimension is 2048, and
the final output dimension is 128.

COCO learning rate. For COCO pre-training including
both baseline and ours, we use an initial learning rate of
0.3 instead of the original 0.03, as the former shows bet-
ter performance in MoCo-v2 baseline when pre-training on
COCO. The results are reported in Table 1.

Detection Classification
lr AP AP50 AP75 mAP

0.03 56.4 81.3 62.6 79.8
0.3 56.7 81.7 63.0 82.9

Table 1 – Learning rate comparison. The results are from
800-epoch COCO pre-trained MoCo-v2. The detection perfor-
mance is evaluated by fine-tuning the pre-trained models on
VOC0712. We also provide results of VOC2007 SVM Classi-
fication.

Fine-tuning details. We provide more details about eval-
uation by fine-tuning. For COCO object detection and
segmentation with Mask R-CNN, we follow the settings
in [8]. Synchronized batch normalization is used in back-
bone, FPN [5] and prediction heads during the training. For
semantic segmentation, we evaluate the pre-trained mod-
els by fine-tuning an FCN-8s [6]. We follow the settings in
mmsegmentation [7], except that the first 7×7 convolution
is kept to be consistent with the pre-trained models. Batch
size is set to 16. Synchronized batch normalization is used.
Crop size is 512 for VOC [4] and 769 for Cityscapes [3].

B. Semi-Supervised Object Detection
In Table 2, we evaluate the pre-trained models on semi-

supervised object detection. In this semi-supervised setting,
only 10% training data is used during the fine-tuning. We
evaluate by fine-tuning a Mask R-CNN (FPN backbone) for
90k iterations on COCO train2017 and tested on COCO
val2017. DenseCL outperforms MoCo-v2 by 1.3% APb

pre-train APb APb
50 APb

75 APm APm
50 APm

75

semi-supervised
random init. 20.6 34.0 21.5 18.9 31.7 19.8
super. IN 23.6 37.7 25.4 21.8 35.4 23.2
MoCo-v2 CC 22.8 36.4 24.2 20.9 34.6 21.9
DenseCL CC 24.1 38.1 25.6 21.9 36.0 23.0
MoCo-v2 IN 23.8 37.5 25.6 21.8 35.4 23.2
DenseCL IN 24.8 38.8 26.8 22.6 36.8 23.9

fully-supervised
MoCo-v2 CC 38.5 58.1 42.1 34.8 55.3 37.3
DenseCL CC 39.6 59.3 43.3 35.7 56.5 38.4
MoCo-v2 IN 39.8 59.8 43.6 36.1 56.9 38.7
DenseCL IN 40.3 59.9 44.3 36.4 57.0 39.2

Table 2 – Semi-supervised object detection and instance
segmentation fine-tuned on COCO. During the fine-tuning,
only 10% training data is used. ‘CC’ and ‘IN’ indicate the pre-
training models trained on COCO and ImageNet respectively.
All the detectors are trained on train2017 for 90k iterations
and evaluated on val2017. The metrics include bounding box
AP (APb) and mask AP (APm).

and 1.0% APb when pre-training on COCO and ImageNet
respectively. It should be noted that the gains are more sig-
nificant than that of the fully-supervised setting which uses
all of ∼118k images during the fine-tuning. For example,
when pre-training on ImageNet, DenseCL surpasses MoCo-
v2 by 1.0% APb and 0.5% APb for semi-supervised setting
and fully-supervised setting respectively.

C. Visualization

Given two views of the same image, we use the pre-
trained backbone to extract the features F1 and F2. For
each feature vector in F1, we find the corresponding feature
vector in F2 which has the highest cosine similarity. The
match is kept if the same match holds from F2 to F1. Each
match is assigned an averaged similarity. In Figure 1, we vi-
sualize the high-similarity matches (i.e., similarity ≥ 0.9).
DenseCL extracts many more high-similarity matches than
its baseline. It is in accordance with our intention that the
local features extracted from the two views of the same im-
age should be similar.
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Figure 1 – Visualization of dense correspondence. The correspondence is extracted between two views of the same image, using the
200-epoch ImageNet pre-trained model. DenseCL extracts more high-similarity matches compared with MoCo-v2. Best viewed on
screen.
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