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1. Architecture details

As described in Section 3 in our paper, DDMP-3D con-
tains image and depth feature encoding branches, with
two DDMP modules adopted at Stage II and III, respec-
tively. We demonstrate the architecture details in Table 1.
Since two DDMP modules (“DDMP_1" and “DDMP_2")
share a similar architecture, we only report the details of
“DDMP_1”. “DDMP_1" first integrates image features
from stage II with depth features from stage II / III / IV
(stage2_depth2 / 3 / 4) and then concatenate the outputs to-
gether. The outputs are scaled to the size of image features
(“DDMP_1 (update)”). Note that the codes of constructing
the model are attached in the supplementary material.

2. Additional experiments

Loss weight selection of auxiliary tasks. The loss weights
for two branches in Equation 10 in our paper determine the
influence of the auxiliary task on main task, which is a key
hyper-parameter in our DDMP-3D framework. To explore
the sensitivity of this parameter, we conduct experiments as
shown in Table 2.

Paying more attention to the main task or at least equal
weights to two tasks can achieve better performance for
our model. When the weight for auxiliary task is equal to
that of main task, it is favorable to detect objects on mod-
erate and hard settings owing to its sensitivity to the cen-
ters. While it is friendly to detect easy objects with higher
weight for main task. A relatively high weight to auxiliary
task brings slightly negative effect on the final performance.
This reflects that L4, is essential on detection results whose
weight should not be less than that of L.
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Statistic analysis on 3D metric. To further demonstrate
the effectiveness of the proposed CDE, we compare the er-
rors on the specific metrics (center “xyz”) of the baseline
method with or without CDE.

As shown in Figure 1, we can see that our proposed CDE
improves the baseline method in “x”, “y” and “z”, resulting
in more accurate monocular 3D object detection. Note that
the “x”, “y”, and “z” indicate the 3D camera coordinates of

the object center point.

Ablation study on the auxiliary task for the depth encod-
ing. We report the experiment results of deploying other
auxiliary tasks in Table 3. It is observed that various auxil-
iary tasks have certain effects on the performances. The task
of 3D center regression (“xyz”) is critical, which introduces
notable improvements on all settings.

However, the performance of adding 3D bounding box
regression (“whl + rotation™) or classification task experi-
enced a drop at some settings. We consider that it is diffi-
cult for bounding box regression and classification on depth
map without well-defined boundary and distinctive appear-
ance. Therefore, we further validate the hypothesis that the
center-aware depth feature encoding helps monocular 3D
object detection.

Different message propagation strategies. How to effec-
tively deliver the depth information through image feature
domain and learn context- and depth-aware feature repre-
sentation is critical for monocular 3D detection. This is also
the objective of this paper. We perform different message
propagation strategies to verify the effectiveness of our pro-
posed DDMP-3D.

As shown in Table 4, “3DNet” is the baseline in D*L.CN
[1], which only contains the single detection branch with-
out the guidance of depth map. “3DNet w/ DGMN [2]”
augments detection branch with the DGMN formulation to
perform the effective feature learning in the RGB feature
domain. “Baseline” integrates images with depth maps via
a common multiplication operation. With the guidance of
depth maps, it easily outperforms the above two methods.
“3DNet w/ DGMN + Depth” introduces the depth informa-



Table 1. Detailed architecture. The table expands the details of the DDMP process on image stage II (DDMP_1), including the message
propagation from image stage I and depth stage I1/ I1I / IV, and the message updating on image stage I1I.

Module ‘ Type / Stride Input name ‘ Output name: size
convl /s=2 image img_convl: 64 x 256 x 880
conv2.x /s=2 img_convl img_stagel: 256 x 128 x 440
Detection backbone (ResNet-50) conv3.x /s=2 img_stagel img_stage2: 512 x 64 x 220
conv4 x /s=2 img_stage2 img_stage3: 1024 x 32 x 110
conv5_x (dilated=2) / s=1 img_stage3 img_stage4: 2048 x 32 x 110
convl /s=2 estimated depth map dep_convl: 64 x 256 x 880
conv2.x / s=2 dep_convl dep_stagel: 256 x 128 x 440
Depth backbone (ResNet-50) conv3.x/s=2 dep_stagel dep_stage2: 512 x 64 x 220
convéd x / s=2 dep_stage2 dep_stage3: 1024 x 32 x 110
conv5_x (dilated=2) / s=1 dep_stage3 dep_stage4: 2048 x 32 x 110
conv 1 x1 img_stage2 img_stage22: 256 x 64 x 220
conv 3 x3 img_stage2?2 img_stage22 offset: 18 x 64 x 220
deform_unfold 3 x3 img_stage2? img_stage22_sample: 256 x 9 x 64 x 220
conv | x1 dep_stage2 dep_stage22: 256 x 64 x 220
deform_conv 3 x3(group = 1) dep_stage22 dep_stage22_affinity: 9 x 64 x 220
DDMP. I (stage2.depth2) conv3 X3 dep_stage22 dep_stage22 filter: 9 x 64 x 220
img_stage22_sample; .
dot dep.stage22.filter stage22_sample: 256 x 9 X (64 x 220)
_ stage22_sample; )
matmul(group=1) dep.stage22 affinity message_stage22: 256 x 64 x 220
Similar to stage2_depth2 img_stage2; )
DDMP_1 (stage2_depth3) (+ interpolate on dep stage3) dep stage? message_stage23: 256 x 64 x 220
Similar to stage2_depth2 img_stage2; )
DDMP_1 (stage2_depth4) (+ interpolate on dep staged) dep staged message_stage24: 256 x 64 x 220
img_stage2; . .
DDMP_1 (update) concat & conv 3 X3 message stage22/23/24 img_stage2: 512 x 64 x 220
o img_stage3; . )
DDMP_2 Similar to DDMP_1 dep stage2/3/4 img_stage3: 1024 x 32 x 110
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Figure 1. The statistic analysis and comparison of the baseline (green) and the baseline with our CDE (red). The vertical axis of the chart
represents the number of samples after normalization. Improvements can be observed in the metrics “x”, “y”, and “z”.

tion via the common multiplication operation. “DDMP” is
our proposed module for integrating image and depth via
graph message propagation.

multi-scale sampled depth feature; “DDMP + CDE” aug-
ments the “CDE” task which has been discussed in the main
paper. Note that thanks to the non-linear Softmax operation
on the generated affinity matrix, the network learns from
the normalized affinities to further boost the final detection
performance, as is shown in the last two rows in Table 4.

The large gains on all settings demonstrate its effective-
ness on propagating depth-conditioned messages. Different
with DGMN [2], our proposed DDMP generates hybrid fil-
ters and affinities used for propagating message from the



Table 2. Comparison results (3D “Car” detection) of different weights of auxiliary tasks on val split set JoU = 0.7). « and (3 are the weights

for Lget and Lgep, respectively.

a: ﬁ AP3D APBEV
Mod. Easy Hard | Mod. Easy Hard
1:0 22.84  28.12 19.09 | 27.05 37.11 24.20
1:2 22771 3135 1894 | 27.18 37.96 24.38
2:1 22.85 3232 1935 | 27.36 41.65 24.47
1:1 23.13 31.14 1945 | 2746 37.71 24.53

Table 3. Comparison results (3D “Car” detection) of different auxiliary tasks on val split set (IoU = 0.7). “DDMP + bbox”, “DDMP +
class”, and “DDMP + center” stand for the bounding boxes regression, classification and center regression tasks, respectively.

APsp APgrv
Method Mod. Easy Hard Mod. Easy Hard
DDMP 22.84 28.12 19.09 27.05 37.11 24.20
DDMP + bbox | 22.48 28.84 (+0.72)  18.31 26.06 36.35 21.00
DDMP + class | 22.69 28.72 (+0.60) 19.16 (+0.07) | 26.94 36.87 24.11
DDMP + center | 23.13 (+0.29) 31.14 (+3.02) 19.45 (+0.36) | 27.46 (+0.41) 37.71 (+0.60) 24.53 (+0.33)

Table 4. Comparison results (3D “Car” detection) of different message integration positions on val split set (IoU = 0.7).

Method Image input | Depth map input Mod. AEZS; Hard | Mod. A]I;i};v Hard

3DNet v i 1461 1794 1274 | 19.89 2487 16.14

3DNet w/ DGMN [2] 1698 20.12 1517 | 2149 2640 17.96
Baseline (3DNet + Depth) v v 18.82 26.03 1627 | 24.18 33.06 19.63
3DNet w/ DGMN [2] +Depth 19.59 27.78 1648 | 2530 3559 20.32
DDMP 2284 28.12 19.09 | 27.05 37.11 24.20

DDMP + CDE v v 2313 31.14 1945 | 2746 3771 2453
DDMP (Softmax) + CDE 2317 3240 1935 | 27.85 42.05 2491

Figure 2. Visualization of sampling points on the images and depth maps, and the predicted results on the KITTI dataset.




Figure 3. More qualitative results on the KITTI dataset. The 3D ground-truth boxes and our DDMP-3D predictions are drawn in green and
red, respectively.



3. Additional qualitative results

Visualization of dynamic sampling points. Figure 2
shows dynamic sampling points based on the learned Ad
and Ad from images and depth maps, respectively. The re-
ceiving nodes are shown with red circles. As shown in left
figure, our sampled image nodes accurately perceive the se-
mantic context: object boundary of left car and the small
object, to enable more effective message passing. Also,
in right figure, we demonstrate our dynamically sampled
multi-scale depth nodes that dedicate to capture the context
of the target objects.

More qualitative results. Figure 3 shows more qualitative
results on the KITTI dataset. The 3D ground-truth boxes
and our DDMP-3D predictions are drawn in green and red,
respectively. As clearly observed, DDMP-3D can produce
high-quality 3D bounding boxes in various scenes.
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