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Figure I: Visualization of feature maps after the ReLU layers in different backbone blocks of EDSR and RCAN. (a) and (c)
are from the first backbone block, while (b) and (d) are from the last backbone block.

Section I presents more examples of feature visualization
for the analyses in Section 3. Section II provides additional
analyses regarding our sparse masks. Section III investi-
gates the compatibility of our sparse masks with other SR
networks. Finally, Section IV includes additional visual re-
sults on different datasets.

I. Feature Sparsity in SR Networks

Figure I shows the feature maps after the ReLU lay-
ers in the backbone blocks of EDSR and RCAN. It can be

observed that a considerable number of channels are quite
sparse (sparsity ≥ 0.8), with only “important” regions (e.g.,
edge and texture regions) being activated. For those “unim-
portant” regions (e.g., flat regions), only a few channels are
activated in EDSR and RCAN. We also illustrate the aver-
age feature sparsity achieved by RCAN on B100 in Fig. II.
Specifically, the feature sparsities of corresponding chan-
nels are averaged over 100 images in B100. It can be ob-
served that the results are consistent with Fig. I, which fur-
ther demonstrates the feature sparsity in SR networks.

Figure III illustrates the feature maps in our SMSR. As
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Figure II: Feature sparsity averaged over B100.
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Figure III: Visualization of feature maps in our SMSR. (a)
and (b) are from the first SMM, while (c) and (d) are from
the last SMM. (a) and (c) are “dense” features marked by
M ch, while (b) and (d) are “sparse” features marked by (1−
M ch).

we can see, feature maps marked by M ch preserve benefi-
cial information in flat regions. In contrast, only regions of
edges and textures are activated in the feature maps marked
by (1−M ch).

II. Additional Analyses of Sparse Masks
Effectiveness of Channel Masks. In addition to spatial
masks, channel masks work in an orthogonal dimension
to enable our network to localize redundant computation
at a fine-grained level. Without channel masks, out net-
work suffers a conflict between efficiency (reducing redun-
dant computation) and performance (preserving necessary
computation) since redundant computation in channel di-
mension cannot be well handled. From Table I we can see
that our SMSR achieves higher sparsity (i.e., lower com-
putational cost) with improved performance (38.00/33.64
vs. 37.97/33.60) if channel masks are used. This clearly
demonstrates the effectiveness of channel masks for accu-
rate localization of redundant computation.
Static Channel Masks vs. Dynamic Channel Masks. In
our SMSR, static channel masks are used to mark redundant
channels since we observe that the indices of channels with
“dense” and “sparse” feature maps are almost consistent in
state-of-the-art SR networks for different inputs, as shown
in Fig. IV. That is, the redundancy in channel dimension
for “unimportant” regions (i.e., flat regions) has little rela-

Table I: Comparative results achieved on Set5 and Set14 for
×2 SR.

Model Mch #Params Set5 Set14
Sparsity PSNR SSIM Sparsity PSNR SSIM

SMSR 7 985K 0.51 37.97 0.9600 0.42 33.60 0.9176
SMSR Dynamic 1012K 0.56 37.98 0.9602 0.46 33.62 0.9178
SMSR Static 985K 0.58 38.00 0.9601 0.46 33.64 0.9179

tion to the input. To further demonstrate this, we introduce
a network variant that predicts dynamic channel masks ac-
cording to the input image at inference time. The compara-
tive results are presented in Table I. It can be observed that
dynamic channel masks do not introduce performance gain
but include additional parameters and computational cost.
Therefore, static channel masks are used in our SMSR.
Visualization of Sparse Masks. Figure V visualizes sparse
masks generated within different SMMs. From SMM-1 to
SMM-3, Mspa learns to mark more locations as “impor-
tant” ones while M ch reduces channels preserved for those
“unimportant” locations (i.e., blue regions in M ch). More-
over, SMM-4 and SMM-5 mainly focus on refining the fea-
tures on a few locations only.

We further investigate the sparsities achieved by our
SMMs for different scale factors. Specifically, we feed an
LR image (×2 downsampled) to ×2/3/4 SMSR networks
and compare the sparsities in their SMMs. As shown in
Fig VI, the sparsities decrease for larger scale factors in
most SMMs. Since more details need to be reconstructed
for larger scale factors, more locations are marked as “im-
portant” ones (with sparities being decreased).
Learning-based Masks vs. Gradient-based Masks. We
compare learning-based masks with gradient-based masks
in Fig. VII. Compared to learning-based masks, gradient-
based spatial masks are fixed throughout the network and
have limited flexibility. Specifically, gradient-based masks
have to activate more channels with “dense” features (i.e.,
the blue regions in M ch) to preserve sufficient information
in those regions uncovered by the spatial masks. There-
fore, it is difficult for gradient-based masks to obtain fine-
grained localization of redundant computation. In contrast,
our learning-based masks can accurately localize redundant
computation to facilitate our SMSR to achieve better per-
formance, as demonstrated in Section 5.2.

III. Compatibility with Other SR Networks

We conduct experiments by applying our sparse masks to
existing SR networks to show their compatibility with other
architectures. Specifically, we use SRResNet [2] and IMDN
[1] as the baselines and compare our sparse masks with re-
cent network compression techniques [3, 4]. SRResNet is
a widely-used baseline while IMDN is a highly-optimized
efficient SR network. Quantitative results are presented in
Table II.
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Figure IV: Visualization of feature maps in the first backbone block of EDSR and RCAN. For different input images, channel
#185 in EDSR and channel #3 in RCAN consistently carry “dense” feature maps, while channel #247 in EDSR and channel
#26 in RCAN carry “sparse” feature maps.
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Figure V: Visualization of sparse masks in different SMMs on baby and butterfly for ×2 SR.

Compared to other network compression techniques, our
sparse masks produce higher PSNR results with compara-
ble computational complexity in terms of FLOPs. Since
our sparse masks consider redundancy in both spatial and
channel dimensions to localize redundant computation at a
fine-grained level, superior performance can be achieved.
Moreover, our sparse masks are also compatible with well-
designed IMDN to further reduce its computational cost
while maintaining comparable performance. This clearly
demonstrates the good compatibility and effectiveness of

our sparse masks.

IV. Additional Visual Results

Figure VIII provides additional visual results achieved
on three images from the Urban100, Set14 and Manga109
datasets. It can be observed from the zoom-in regions that
our SMSR recovers finer details with better perceptual qual-
ity while other methods suffer obvious blurring or distorted
artifacts.
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Figure VI: Comparison of sparsities achieved in different SMMs on baby and butterfly for different scale factors.
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Figure VII: Comparison of learning-based and gradient-based masks.
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Table II: PSNR results achieved for ×4 SR. FLOPs is computed based on HR images with a resolution of 720p (1280×720).
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Figure VIII: Visual comparison on Urban100, Set14, and Manga109 for ×4 SR.
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