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I. Introduction
In this supplementary material, we provide extra details

of our architecture in Section II, including designs of the
FESTA network and the flow interpolation module, as well
as a more detailed analysis of the proposed SA2 layer. Addi-
tional experimental results, both quantitatively and qualita-
tively, are then provided in Section III.

II. More on the FESTA Architecture
II-A. Specifications of FESTA

The detailed architectural design of the proposed FESTA
is presented in Table I. It can roughly be divided into two
portions: the spatial-domain processing and the temporal-
domain processing. Firstly, given two consecutive point
clouds pre-processed by the FPS grouping, they are fed to a
SA2 layer to generate the spatial features, and form matrices
of sizes n1

8 × 67 for the first point cloud and n2

8 × 67 for
the second point cloud (See Figure 2 of the paper). Then the
spatial features of the two point clouds are fused by the TA2

layer. Subsequent temporal-domain processing extracts the
scene flow in conjunction with the existence mask. Having
obtained an initial scene flow for the TA2 layer, the temporal-
domain processing is iterated again using the same network
parameters, except for the searching radius of the TA2 is
now cut by half. The adjustment of the searching radius is
motivated by an assumption that the searching center shifted
by the initial scene flow is closer to a target position. At the
end, two sets of MLP Layers, Feature-to-Flow (F2F) MLP
and Feature-to-Mask (F2M) MLP, are run independently to
extract point-wise scene flow of size n1 × 3 and point-wise
binary mask of size n1 × 1.

II-B. Flow Interpolation Module

In the second iteration of temporal-domain processing,
the TA2 layer requires rough flow vectors as input to the
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Table I. FESTA architecture spes.
Layer Radius Sampling Rate MLP Width

Spatial-domain processing
SA2 1 0.125× [64, 64, 128]

Temporal-domain processing

TA2 10 (1st iter.)
5 (2nd iter.)

1× [128, 128, 128]

Set Abs. 2 0.25× [128, 128, 256]
Set Abs. 4 0.25× [256, 156, 512]
Set Up. 4 4× [128, 128, 256]
Set Up. 2 4× [128, 128, 256]
Set Up. 1 4× [128, 128, 128]
Set Up. 0.5 2× [128, 128, 128]

F2F MLP - - [256, 128, 3]
F2M MLP - - [256, 128, 1]
Flow Interp. - 0.5× -

down-sampled point cloud produced by the SA2 layer, which
cannot be retrieved by directly indexing the initial scene flow
output. To tackle this mismatch, a deterministic scene flow
interpolation module is proposed. Specifically, for the first
point cloud X = {xi}n1

i=1, our network generates for each
point xi an initial scene flow vector vi at the first iteration.
Then for a position x′, its scene flow vector v′ is interpolated
as:

v′ =
Σi|xi∈N (x′)α(xi,x

′) · vi

Σi|xi∈N (x′)α(xi,x′)
(i)

where α(xi,x
′) = 1/ ‖xi − x′‖2 is the inverse Euclidean

distance between xi and x′, while N (x′) denotes the neigh-
borhood of x′. In this way, we interpolate v′ ∈ R3 by
assigning higher weights to those points that are closer to x′.
Then v′ is added to x′ for defining the new attended region
of the TA2 layer.

II-C. More detailed Analysis of the SA2 Layer

Following the same set of symbols as defined in Sec-
tion 4.1 of the paper, we herein provide a more detailed
derivation of the integration (4). At the limit where the 3D
point cloud approaches the manifold M, the weights wi

in (3) of the paper becomes a probability density function
defined onM. This probability density function, denoted as



FlowNet3D FESTA

Figure I. Comparison between FlowNet3D and FESTA on the FlyingThings3D dataset. 1st PC and 2nd PC are shown in red and green
respectively. The results are shown via the warped PC (in blue) – 1st PC warped by the scene flow.

p′(s), depends on both the sampling distribution p as well as
the dot-product metric f(s)Tfg .

Let us first consider the simple case where p follows a
uniform distribution, then p′(s) is solely related to the met-
ric f(s)Tfg. Particularly, it becomes the term w

(
f(s)Tfg

)
in (4). That is because the function w(·) in (4) con-
verts the dot-product f(s)Tfg to a weight value so that∫
M w

(
f(s)Tfg

)
ds = 1. In other words, w

(
f(s)Tfg

)
also

defines a probability density function on the manifoldM.
Therefore

s′ =

∫
M
p′(s) · s ds =

∫
M
w
(
f(s)Tfg

)
· s ds. (ii)

When p is generalized to other distributions, p′(s) ∝
w
(
f(s)Tfg

)
p(s), i.e., p(s) “modulates” the value of p′(s)

independently. More precisely,

p′(s) =
1

α
w
(
f(s)Tfg

)
p(s) (iii)

with a normalization factor α =
∫
M w

(
f(s)Tfg

)
p(s) ds.

Based on (iii), s′ becomes

s′ =

∫
M
p′(s) · s ds, (iv)

Table II. Evaluation of the existence mask (in %).

Datasets Accuracy Precision Recall
FlyingThings3D, geo.-only 90.22 93.14 95.57

FlyingThings3D, geo.+RGB 92.16 95.23 97.76

which equals the integration (4) presented in the paper.

III. More on Experimentation
III-A. Existence Mask Prediction

We evaluate the quality of the estimated existence mask
from FESTA in Table II. This is only conducted on the Fly-
ingThings3D dataset as it includes a ground-truth existence
mask for training/testing. The estimation accuracy, preci-
sion and recall are all greater than 90% for both geometry
only and geometry+RGB configurations. The observation
reveals the reason that predicting the existence mask could
help improving the flow estimation.

III-B. More Visual Results

Herein, we present additional visual comparisons be-
tween the proposed FESTA and the FlowNet3D [3]. Figure I
first shows the results on the Flyingthings3D dataset [2].
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Figure II. Comparison between FlowNet3D [3] and FESTA on the KITTI dataset. 1st PC and 2nd PC are shown in red and green respectively.
The results are shown via the warped PC (in blue) – 1st PC warped by the scene flow.

Note that the regions in the grey circle are zoomed in to
better visualize the difference between the two methods. The
results of our method (in blue) are greatly overlapped with
the second input point cloud (in green), which verifies the
superiority of FESTA. We similarly compare our proposal
and FlowNet3D on the KITTI dataset [1] and show in Fig-

ure II and Figure III. Selected regions are again enlarged for
inspection, from which we again confirm the effectiveness
of our method compared to FlowNet3D.



FlowNet3D

FESTA

FlowNet3D

FESTA

Figure III. Comparison between FlowNet3D and FESTA on the KITTI dataset.1st PC and 2nd PC are shown in red and green respectively.
The results are shown via the warped PC (in blue) – 1st PC warped by the scene flow.
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