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Abstract

In this supplementary material, we provide more details
on the deduction of the variational objective, and the net-
work structures described in the main submission. Besides,
we demonstrate more experimental results in rain genera-
tion and rain removal. In the end, we present ablation stud-
ies to further analyze our model.

1. More Details of Variational Objective
Here we provide a detailed derivation for variational ob-

jective in Section 3.2 of the main text. By introducing the
variational approximate posterior q (z, b|o), the logarithm
of the rainy image distribution p (o) can be expressed as:

log p (o) =
∫ ∫

q (z, b|o) logp (o) dzdb

=
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∫ ∫
q (z, b|o) log

[
q (z, b|o)
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= Eq(z,b|o)[logpθ(o|z, b)p(z)p(b)−logq(z, b|o)]
+DKL [q (z, b|o) || p (z, b|o)] .

(1)

Obviously, this is just the decomposition form given in E-
q. (7) of the main text, as:

logp (o)=L (z, b;o)+DKL [q (z, b|o) || p (z, b|o)] , (2)
†Corresponding author
∗Equal contribution

where

L(z, b;o)=Eq(z,b|o)[logpθ(o|z, b)p(z)p(b)−logq(z, b|o)] .
(3)

2. More Details on Network Architectures
As shown in the main text, the entire network architec-

ture is constructed as Fig. 1, called variational rain gener-
ation network (VRGNet). It is noteworthy that we aim to
propose such a variational inference framework toward rain
generation without putting more emphasis on the careful de-
sign of every sub-network architecture. Specifically, each
sub-network adopted in our experiment, is illustrated as:

BNet infers posterior parameters µ and σ2 from o and
aims to restore the latent clean background b. We select
the latest baseline network–PReNet [9] due to its simplicity
and fast training process. In specific, the adopted PReNet is
composed of 6 [Conv + ReLU +LSTM + ResBlocks+ Con-
v] stages. The network parameters are inter-stage sharing.
Besides, in each stage, the ResBlocks consists of 5 [Con-
v+ReLU+Conv+ReLU+Skip connection] units.

RNet helps infer the posterior parameters α and β for
latent variable z, and it consists of 5 [Conv+ReLU] blocks
and a [Linear layer] in turn.

Generator represents the mapping G(z; θ) for generat-
ing rain patches from extracted latent variables z. Symmet-
rically, it contains a [Linear layer] and 5 [Transpose Conv
+ ReLU] blocks. For back propagation, we adopt the repa-
rameterization trick as proposed in [6].

Discriminator aims to distinguish the training sample o
from the generated ô, which helps the learning of G(z; θ).
Similar to the settings of most discriminators [8, 13], the
sub-network is composed of 4 [Conv + LeakyReLU] block-
s and a [Conv layer], and the negative slope is set as 0.1
in LeakyReLU operation. To stabilize the training process,
we also introduce the spectral normalization [7] in the sub-
network. Besides, motivated by [13], we add the attention
mechanism on the last two convolution layers to capture the
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Figure 1. The flowchart of the proposed variational rain generation network (VRGNet).

(a)Varying latent code       from -3 to 3 (Scale) 𝑧22

(b)Varying latent code       from -3 to 3 (Direction) 𝑧24

(c)Varying latent code        from -3 to 3 (Thickness) 𝑧110

Group1: left to right

Group2: heavy to light

Group1: light to heavy

Group1: small to big

Group2: big to small

Group2: right to left

Figure 2. Manipulating latent code z ∈ R128. Taking subfigure (a) as an example, we sample a random vector (latent code z ) from the
normal distribution, and then only vary the latent element at the 22-th dimension of z from -3 to 3 with the interval as 0.4. Taking each
varied vector z as the input of the generator G, the output r corresponds to each rain layer shown in (a), which demonstrates the scale
property of rain. When we randomly sample two times from the normal distribution for the latent code z and repeat this experiment, the
generated r are correspondingly displayed as two groups. (a)-(c) denote varying different latent elements and the learned latent variables
physically represent scale, direction, and thickness, respectively.

global correlation in image.
Note that the number of blocks in these sub-networks,

including RNet, Generator, and Discriminator, is set based
on the patch size (height × width of rain patches) during
the network training process. In our experiments, the size
is set as the commonly-used 64 × 64 in current SOTAs for
this task. If other size settings are required, the number of
blocks needs to be correspondingly adjusted.

3. More Rain Generation Experiments

In this section, we provide more disentanglement and la-
tent space interpolation experiments to validate that the pro-
posed rain generator is rational and can finely capture the

manifold of rain underlying its implicit distribution.

3.1. Disentanglement Experiments

Fig. 2 shows the resulted rain layers by manipulating the
latent code z like the conventional disentanglement opera-
tions [1, 2, 5]. The learned generator is obtained by jointly
training the proposed VRGNet based on Rain100L. From
the figure, we can easily observe that these latent variables
well deliver interpretable properties in generating rain layer,
including direction, thickness, and scale. That is to say, the
proposed VRGNet inclines to discover meaningful latent
rain factors, which is finely in accordance with our mod-
eling for rain layer by utilizing latent variables z to encode
such physical structural factors.
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Figure 3. Interpolation. Left: two original rainy images from Rain100L and their rain layers. Right: generated rainy images (the first two
rows) and synthetic rains (3rd row) obtained by linearly interpolating the latent codes of the two original rainy images.

Table 1. PSNR and SSIM (mean and standard deviation) of PReNet on the SPA-Data test set. Baseline denotes that training samples are all
from SPA-Data (∼600K), and GNet means the augmented training where training samples consist of 1K real pairs randomly selected from
∼600K and different number of fake pairs. Specifically, the fake samples are generated by our generator that is jointly trained on ∼600K.
In each scene, the training pairs between Baseline and GNet keep the same, and the result is computed over 5 random attempts. The
case that Baseline with ∼600K has no randomness about samples.

# Real samples 1K 1.5K 2K 3K 4K 5K 6K 7K ∼600K
Baseline (PSNR), mean±std 39.41±0.24 39.70±0.21 39.86±0.20 39.96±0.20 40.05±0.19 40.04±0.18 40.00±0.18 40.06±0.15 40.16

# Samples (real+fake) 1K+0K 1K+0.5K 1K+1K 1K+2K 1K+3K 1K+4K 1K+5K 1K+6K -
GNet (PSNR), mean±std 39.41±0.24 39.71±0.26 39.83±0.20 40.25±0.21 40.24±0.17 40.53±0.20 40.68±0.17 40.70±0.11 -

# Real samples 1K 1.5K 2K 3K 4K 5K 6K 7K ∼600K
Baseline (SSIM), mean±std 0.9787±8e-4 0.9800±7e-4 0.9809±6e-4 0.9813±7e-4 0.9815±8e-4 0.9814±5e-4 0.9815±6e-4 0.9815±5e-4 0.9816

# Samples (real+fake) 1K+0K 1K+0.5K 1K+1K 1K+2K 1K+3K 1K+4K 1K+5K 1K+6K -
GNet (SSIM), mean±std 0.9787±8e-4 0.9796±6e-4 0.9795±5e-4 0.9813±8e-4 0.9814±4e-4 0.9819±5e-4 0.9820±4e-4 0.9819±4e-4 -

3.2. Latent Manifold Analysis

We conduct interpolation operations in the latent space
to estimate the manifold continuity. Here the VRGNet is
jointly trained based on Rain100L. Specifically, for a pair
of rainy images selected from Rain100L shown at the left
of Fig. 3, we first utilize the inference model RNet to obtain
their latent codes za and zb, and then make linear interpo-
lations between za and zb with different weighting coeffi-
cients from 0 to 1. By inputting the weighted latent code
z to the rain generator G, we thus synthesize different rain
layers shown in the 3rd row at the right of Fig. 3. The first
two rows are the generated rainy images by adding these
synthetic rains on different backgrounds restored by BNet.
It is easy to observe that our rain generator has continuity in
the latent space in changing the direction of rain streaks and
it indeed has a fine capability to generate diverse rain types
instead of simply memorizing the patterns in input images.

Note that in order to better observe the variation of rain
streaks, in the interpolation experiments as shown in Fig. 1
of the main text, we have not displayed input rainy images
that are used to obtain z, but provided the corresponding
rain layers which are easily obtained by subtracting back-
grounds from the rainy images in paired testing dataset.

For better visual effect, we have conducted several

groups of interpolation experiments and make each group as
a file with the format ‘.gif’ as provided in the submitted sup-
plementary material compressed package. In these experi-
ments, we show the variation of rain streaks in directions,
thicknesses, and diversities. In each group experiment, the
first and the last frames are the rain layers corresponding to
one pair of input rainy images from the existing dataset, and
between these two frames are the interpolated results.

3.3. More Small Sample Experimental Results

In this section, we also provide the SSIM results for the
small sample experiments in Section 5.3 of the main text, as
listed in Table 1. From it, we can observe that with the in-
crease of ratioNf from 0 to 6, the average PSNR and SSIM
under augmented training are superior or at least compara-
ble to the performance (40.16 dB and 0.9816) under original
training based on the ∼600K real pairs. Please refer to the
main text for more analysis.

4. More Rain Removal Experiments
In this section, we provide more experimental results on

several benchmark datasets.
Representative Methods. We evaluate the effec-

tiveness of the augmentation strategy benefitted from
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Figure 4. Vertical contrast. Performance comparison on a test image from Rain100L, including rainy image/groundtruth, derained results
from DSC/JCAS, and deep derainers trained on the original (1st row) / augmented (2nd row) Rain100L training set. PSNR/SSIM is listed
behind each result for easy reference. The images are better observed by zooming in on screen.
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Figure 5. Vertical contrast. Performance comparison on a test image from Rain1400, including rainy image/groundtruth, derained results
from DSC/JCAS, and deep derainers trained on the original (1st row) / augmented (2nd row) Rain1400 training set.

Table 2. PSNR and SSIM comparisons on SPA-Data testing set. “+” denotes the augmented training. 4↑ represents the performance gain
brought by the augmented rains generated by our rain generator that is jointly trained on the SPA-Data training set. Note that the baseline
of one method “A+” is “A”.

Methods Input DSC JCAS DDN DDN+ 4↑ SPANet SPANet+ 4↑ PReNet PReNet+ 4↑ JORDER E JORDER E+ 4↑

SPA-Data PSNR 34.15 34.95 34.95 36.16 39.47 3.31 38.14 38.59 0.45 40.16 40.27 0.11 40.78 41.49 0.71
SSIM 0.927 0.942 0.945 0.946 0.974 0.028 0.973 0.974 0.001 0.981 0.984 0.003 0.980 0.985 0.005

VRGNet through latest DL-based SIRR methods, including
DDN [3], PReNet [9], SPANet [10], and JORDER E [11].
In the followings, we use notation ‘A+’ to denote the result-
s of the method A after being retrained on the augmented
dataset. Note that although our proposed VRGNet aims to
help better train these DL-based SOTA derainers via data
augmentation, we also list the performance of two repre-
sentative model-based methods DSC [12] and JCAS [4] for
more comprehensive comparisons.

4.1. More Results on Synthetic Data

Fig. 4 and Fig. 5 illustrate the deraining results on two
typical hard samples, from Rain100L and Rain1400, re-
spectively. From the two figures, it is easy to observe that
for every DL-based method, when trained on augmented
dataset generated by VRGNet, its reconstructed background
(2nd row) has better visual quality, especially in texture p-

reservation, than the corresponding one (1st row) trained on
original training set. Clearly, the VRGNet has the potential
to generate rains with better diversity. Note that the perfor-
mance gain varies among different deep derainers, which is
mainly caused by their different model capacities.

Note that Fig. 4 and Fig. 5 are the performance compar-
isons on one test image. More quantitative comparisons on
the entire testing set are listed in Table 2 of the main text.

4.2. More Results on Real SPA-Data

We then evaluate the effectiveness of the proposed gen-
erator on the real SPA-Data [10], including ∼600K training
pairs and 1K testing pairs. During the augmented training
phase, the exploited rain generator is trained on the entire
SPA-Data training set (∼600K). Note that this section rep-
resents the same domain test experiments, instead of the
generalization case as shown in Section 6.2 of the main text.



JORDER_E+  42.88 / 0.991
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Figure 6. Vertical contrast. Performance comparison on a test image from SPA-Data, including rainy image/groundtruth, derained results
from DSC/JCAS, and deep SOTAs trained on the original (1st row) / augmented (2nd row) SPA-Data training set.

`

JORDER_E+  34.95 / 0.954

JORDER_E  31.57 / 0.935PReNet  31.98 / 0.938
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Figure 7. Vertical contrast. Generalization comparison on a test image from SPA-Data, including rainy image/groundtruth, derained
results from DSC/JCAS, and deep derainers trained on the original (1st row) / augmented (2nd row) Rain100L training set.

Table 2 provides the quantitative results, which finely
confirms the effectiveness of our proposed VRGNet in real
rain generation1. Fig. 6 displays the visual comparisons on
a test rainy image with complicated rain types from SPA-
Data, and shows that all the DL-based derainers trained on
the augmented SPA-Data have better capability in rain re-
moval and detail recovery. Note that due to the dual influ-
ence of network structure and the quality of training set, the
improvement room4↑ for every method is different.

1Note that in our all experiments, the used patch size is different from
the default setting in SPANet. Under this training setting, the retrained S-
PANet has lower performance on SPA-Data than the original one released.

4.3. More Generalization Results on Real SPA-Data

Fig. 7 shows the derained results on a test rainy image
from SPA-Data. From it, we can observe that as com-
pared to original training, all DL-based methods with the
augmented training have achieved better visual quality and
higher PSNR/SSIM. Note that due to the dual influence of
network structure and the quality of training set, the im-
provement room4↑ for every method is different.

5. More Analysis about VRGNet

5.1. Derained Results of VRGNet

When jointly training the VRGNet as shown in Fig. 1, we
adopt the latest PReNet [9] as the BNet due to its simplicity



Discriminator

𝒐 𝒐𝜶 𝜷 𝒛~𝒩(𝒛|𝜶, 𝜷)

ෝ𝒐~𝑝(ෝ𝒐|𝒙, 𝒓)
D

reparame-

terization

Rain Inference

𝑞(𝒛|𝒐)

RNet

Generator

𝐺(𝒛;𝑊𝐺)

G

Fake

Real𝑫(𝒐)

𝑫(ෝ𝒐)𝒙

𝒓 = 𝐺(𝒛; 𝜃)

Figure 8. The flowchart of VRGNet- that directly regards x as b.

Table 3. PSNR and SSIM on benchmark datasts under different
cases, including jointly training the VRGNet (PReNet-) and only
training BNet (PReNet).
Datasets Rain100L Rain100H Rain1400 SPA-Data
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Input 26.90 0.838 13.56 0.371 25.24 0.810 34.15 0.927

PReNet- 36.94 0.975 30.08 0.887 32.19 0.941 39.70 0.978
PReNet 37.42 0.979 30.11 0.905 32.24 0.944 40.16 0.981

Table 4. Average PSNR and SSIM of PReNet on SPA-Data testing
set. VRGNet- denotes the simplified VRGNet by removing BNet,
as shown in Fig. 8. Under each setting, the result is averaged over
5 random repeated attempts.

# Samples (real+fake) 1K+0.5K 1K+1K 1K+2K
VRGNet- (PSNR / SSIM) 39.41 / 0.9790 39.39 / 0.9787 39.35 / 0.9784
VRGNet (PSNR / SSIM) 39.71 / 0.9796 39.83 / 0.9795 40.25 / 0.9813

and fast training speed. After the joint training, the derained
results (denoted as PReNet-) on benchmark datasets are re-
ported in Table 3. Naturally, we find that due to the regu-
larization effect of adversarial loss in Eq. (17) of the main
text, the performance of PReNet- is a little lower than (but
comparable to) that only training BNet (PReNet) based on
the negative SSIM loss. This trend is consistent with that in
most GAN based methods for low-level tasks.

5.2. More Analysis on the Role of BNet

From Fig. 1, after the joint training, the BNet does not
play roles in new rain layer augmentation. However, this
subnetwork is indeed necessary as analyzed below.

For convenience, we briefly denote VRGNet- as the
model discarding BNet and directly regarding the rain-
free image x as the latent background b, as shown in
Fig. 8. In this setting, the posterior assumption q (b|o) =∏d
j=1N

(
bj |µj (o;WB) , σ

2
j (o;WB)

)
as Eq. (13) of the

main text can be simply set as a Dirac distribution without
any parameters, i.e.,

q(b|o) = Diracx(b), (4)

where Diracx(·) means the Dirac distribution centered at
point x. This hard assumption will lead to the degraded net-
work framework displayed as Fig. 8. As a special case, it
indeed simplifies our proposed inference framework (Fig. 1)
to some extent, but has stricter requirements for the accura-
cy of the estimated rain-free image x. If the pre-collected
“rain-free” image x is not sufficiently accurate, it will natu-
rally degrade the training performance of RNet and the gen-
erator G. In contrast, the introduction of BNet is able to alle-
viate this issue by providing a better predicted background,
and then helps G generate more plausible rain layer to fool
discriminator D. Therefore, we propose to adopt the more
general posterior assumption as Eq. (13) of the main text
and retain BNet in this paper.

To further substantiate the analysis above, we compare
VRGNet- and VRGNet based on the semi-automatically
generated real SPA-Data [10], including ∼600K training
pairs and 1K testing pairs. Specifically, in SPA-Data, the
rain-free image x is estimated based on multiple rainy im-
ages taken in the same condition, and thus is not the exact
latent clean background b. First, we execute the joint train-
ing on the VRGNet- (Fig. 8) and VRGNet (Fig. 1), respec-
tively, based on the ∼600K training pairs, and obtain the
corresponding different generator G. Then we randomly s-
elect 1K pairs from the original∼600K pairs and separately
augment them with ratio Nf (i.e., generate NfK fake pairs)
by utilizing the learned two different generators.

Table 4 reports the PSNR/SSIM averaged over 5 repeti-
tions for each different augmentation ratio Nf . From the
table, we can easily observe that 1) Under each Nf set-
ting, the performance of VRGNet significantly surpasses
VRGNet-. 2) With the increase of Nf from 0.5 to 2, the
average PSNR/SSIM results of VRGNet get better while
that of VRGNet- becomes worse. This is mainly because
VRGNet- does not finely capture the essential rain distribu-
tion without the guidance of BNet.



References
[1] Christopher P Burgess, Irina Higgins, Arka Pal, Loic

Matthey, Nick Watters, Guillaume Desjardins, and Alexan-
der Lerchner. Understanding disentangling in β-VAE. arXiv
preprint arXiv:1804.03599, 2018. 2

[2] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Infogan: Interpretable repre-
sentation learning by information maximizing generative ad-
versarial nets. In Advances in Neural Information Processing
Systems, 2016. 2

[3] Xueyang Fu, Jiabin Huang, Delu Zeng, Huang Yue, Xinghao
Ding, and John Paisley. Removing rain from single images
via a deep detail network. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3855–3863, 2017. 4

[4] Shuhang Gu, Deyu Meng, Wangmeng Zuo, and Zhang Lei.
Joint convolutional analysis and synthesis sparse representa-
tion for single image layer separation. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1708–1716, 2017. 4

[5] Hyunjik Kim and Andriy Mnih. Disentangling by factoris-
ing. arXiv preprint arXiv:1802.05983, 2018. 2

[6] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 1

[7] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. arXiv preprint arXiv:1802.05957, 2018.
1

[8] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolution-
al generative adversarial networks. arXiv preprint arX-
iv:1511.06434, 2015. 1

[9] Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei Zhu,
and Deyu Meng. Progressive image deraining networks: a
better and simpler baseline. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3937–3946, 2019. 1, 4, 5

[10] Tianyu Wang, Xin Yang, Ke Xu, Shaozhe Chen, Qiang
Zhang, and Rynson WH Lau. Spatial attentive single-image
deraining with a high quality real rain dataset. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 12270–12279, 2019. 4, 6

[11] Wenhan Yang, Robby T. Tan, Jiashi Feng, Jiaying Liu,
Shuicheng Yan, and Zongming Guo. Joint rain detection and
removal from a single image with contextualized deep net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PP(99):1–1, 2019. 4

[12] Luo Yu, Xu Yong, and Ji Hui. Removing rain from a sin-
gle image via discriminative sparse coding. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3397–3405, 2015. 4

[13] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks.
arXiv preprint arXiv:1805.08318, 2018. 1


