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A. Overview
This supplementary material is organized as follows:

• We describe the architecture of Local-Net, Global-Net
and DAD-head in Sec. B.

• We introduce the implementation details on MVTec
AD [3] and CIFAR-10 [11] dataset in Sec. C.

• We provide more experiment results on MVTec AD
dataset [3] in Sec. D, including results in image-
level anomaly detection task (Sec. D.1) and more
visualizations in pixel-level anomaly localization task
(Sec. D.2).

B. Model Architecture
In this part, we provide the architecture of the models,

i.e., Local-Net, Global-Net and DAD-head.

Local-Net. Local-Net accepts image patches, whose shapes
are 33×33×3, and outputs local features, whose shapes are
1× 1× 128. Tab. 1 illustrates the architecture of the Local-
Net, where the negative slopes in all leaky ReLU layers are
5× 10−3.

Table 1. Architecture of Local-Net.
Parameters

Layer Output Size Kernel Stride Padding

Input 33× 33× 3
Conv1 31× 31× 128 3× 3 1 0
Leaky ReLU 31× 31× 128
MaxPool 15× 15× 128 2× 2 2 0
Conv2 11× 11× 256 5× 5 1 0
Leaky ReLU 11× 11× 256
MaxPool 5× 5× 256 2× 2 2 0
Conv3 4× 4× 256 2× 2 1 0
Leaky ReLU 4× 4× 256
Conv4 1× 1× 128 4× 4 1 0
Leaky ReLU 1× 1× 128

Global-Net. Global-Net is fed with images and binary

masks, both of which are with shape 256 × 256 × 3, and
outputs global features in shape of 1×1×128. The detailed
architecture of the Global-Net is shown in Tab. 2, where
PartialConv stands for the partial convolution [12].

Table 2. Architecture of Global-Net.
Parameters

Layer Output Size Kernel Stride Padding

Input 256× 256× 3
PartialConv0 125× 125× 16 7× 7 2 0
ReLU 125× 125× 16
MaxPool 62× 62× 16 3× 3 2 0
PartialConv1 1 30× 30× 32 3× 3 2 0
ReLU 30× 30× 32
PartialConv1 2 28× 28× 32 3× 3 1 0
ReLU 28× 28× 32
PartialConv2 1 13× 13× 64 3× 3 2 0
ReLU 13× 13× 64
PartialConv2 2 11× 11× 64 3× 3 1 0
ReLU 11× 11× 64
PartialConv3 1 5× 5× 128 3× 3 2 0
ReLU 5× 5× 128
PartialConv3 2 3× 3× 128 3× 3 1 0
ReLU 3× 3× 128
PartialConv4 1× 1× 128 3× 3 1 0

DAD-head. Given a global and local feature, the Distortion
Anomaly Detection (DAD) head predicts the probability of
whether they match or not. Both features are 128d vectors
and they are concatenated as a 256d vector before fed into
the DAD-head. The architecture of the DAD-head is shown
in Tab. 3, where the negative slope in all leaky ReLU layers
are 1× 10−2.

Table 3. Architecture of DAD-head.
Layer Input FC0 Leaky ReLU FC1 Leaky ReLU Softmax

Output
Size 256 128 128 2 2 2



C. Implementation Details
In this section, we describe the implementation details

on MVTec AD [3] (Sec. C.1) and CIFAR-10 [11] (Sec. C.2)
datasets.

C.1. Implementation Details on MVTec AD

Our approach consists of two steps, i.e., pre-training
Local-Net, and training Global-Net and DAD-head with the
Local-Net fixed. Images are resized to 256×256 resolution
and the cropped patches are with 33× 33 pixels.
Pre-training Local-Net. We distill Local-Net from pre-
trained ResNet-18 [8]1. The distillation is first performed
on ImageNet [5] for 50K iterations with batch size 64.
Then we fine-tune the Local-Net on some certain category
of MVTec AD [3] for another 50K iterations with batch size
16. In both processes, we set loss weights as λk = λc =
1.0. Adam optimizer [10] with β1 = 0.9 and β2 = 0.999 is
used and the learning rate is set as 2.0× 10−4.
Training Global-Net and DAD-head. After pre-training,
the parameters of Local-Net are fixed during the training
of Global-Net and DAD-head. We randomly crop patch p
from the image, and add some random stains on the patch to
produce p−. The loss weight λt is set as 0.01. Both Global-
Net and DAD-head employ an Adam optimizer with β1 =
0.9 and β2 = 0.999, and they are updated with learning
rates 10−4 and 10−5 respectively. The training is performed
for 200K iterations with batch size 64.
Inference. At the inference stage, for every image, patches
are cropped one after another in a roster-scan order, with
20 patches on each side (i.e., totally 400 patches for an
image), where patches are uniformly distributed and overlap
is allowed between two adjacent patches. The anomaly
score is estimated with λs = 0.8. After calculating anomaly
scores for all patches in an image, we fuse these scores
into a score map using the inverse distance weighted (IDW)
interpolation [2] with p = 5.

C.2. Implementation Details on CIFAR-10

In this part, we introduce the implementation details of
the one-class classification experiment on CIFAR-10 [11].
Pre-training Local-Net. The distillation on ImageNet [5]
is the same as that in Sec. C.1. During the fine-tuning on
each category of CIFAR-10, for every image I, we resize I
into the patch size (i.e., 33 × 33) as IL, which functions as
the image patch in Sec. C.1. Other settings remain the same
as in Sec. C.1, except that the learning rate is set as 10−5.
Training Global-Net and DAD-head. During training
Global-Net and DAD-head, for every image I, we resize
I into the patch size (i.e., 33 × 33) and the image size (i.e.,

1We use the ResNet-18 checkpoint in https://download.
pytorch.org/models/resnet18-5c106cde.pth.

256 × 256), denoted as IL and IG respectively. IL and IG
can be perceived as the patch and image in Sec. C.1. Here,
we use a random different image resized into the patch size
as the negative patch p−. Other settings remain the same
as in Sec. C.1, except that the learning rates for Global-Net
and DAD-head are both 10−5 and the number of training
iterations is 300K.

D. More Experiment Results
We further provide more experiment details, including

image-level anomaly detection results (Sec. D.1) and more
anomaly localization visualizations (Sec. D.2) on MVTec
AD dataset [3].

D.1. Image-level Anomaly Detection on MVTec AD

Despite anomaly localization task, we also test our
method’s anomaly classification capability on the image-
level anomaly detection task. Specifically, for each category
in MVTec AD, we train a model to separate abnormal
images from anomaly-free images.
Setup. We use the same training and inference pipelines
and hyper-parameters as those in Sec. C.1 yet the per-
formance is evaluated from the image-level instead of the
pixel-level. Here, for each image, we assume the maximum
value of anomaly score map as anomaly score.
Baselines. The baselines include GeoTrans [6], GANomaly
[1], AE [7], ARNet [9] and AESc+Stain [4]. The results of
GeoTrans, GANomaly and AE are borrowed from [9], and
the results of AESc+Stain and ARNet are reported by their
original papers.
Quantitative Results in Image-level AUROC. The image-
level AUROC results are shown in Tab. 4. Our method
considerably exceeds the existing alternatives (∼ 2%).

D.2. More Quantitative Results on MVTec AD

We provide more qualitative anomaly localization results
by using our algorithm on all the categories in MVTec AD
dataset [3]. The categories include: carpet (Fig. 1), grid
(Fig. 2), leather (Fig. 3), tile (Fig. 4), wood (Fig. 5), bottle
(Fig. 6), cable (Fig. 7), capsule (Fig. 8), hazelnut (Fig. 9),
metal nut (Fig. 10), pill (Fig. 11), screw (Fig. 12), tooth-
brush (Fig. 13), transistor (Fig. 14), and zipper (Fig. 15).
We observe that our approach performs steadily in all these
categories consisting of various anomaly types, demonstrat-
ing its generalization ability and robustness.

In particular, when dealing with some anomalies which
seem ordinary in each single patch, such as cable swap (the
second example in Fig. 7), faulty imprint (the last example
in Fig. 8), bent lead (the first example in Fig. 14), cut
lead (the second example in Fig. 14), and misplacement
(the fourth and fifth example in Fig. 14), our algorithm
adequately locates the abnormal areas, benefiting from the



Table 4. Comparison results among different anomaly detection
methods in the image-level anomaly detection task on MVTec
AD dataset [3]. Competitors include GeoTrans [6], GANomaly
[1], AE [7], ARNet [9] and AESc+Strain [4]. The results of
GeoTrans and GANomaly are borrowed from [9], and the results
of ARNet and AESc+Stain are originally reported in their papers.
Image-level AUROC is used as the evaluation metric.

Category GeoTrans GANomaly AE ARNet AESc+Stain Ours

Carpet 0.44 0.70 0.64 0.71 0.89 0.92
Grid 0.62 0.71 0.83 0.88 0.91 0.67

Leather 0.84 0.84 0.80 0.86 0.89 0.83
Tile 0.42 0.80 0.74 0.74 0.99 0.97

Wood 0.61 0.83 0.97 0.92 0.95 1.00
Bottle 0.74 0.89 0.65 0.94 0.98 0.99
Cable 0.78 0.76 0.64 0.83 0.89 0.98

Capsule 0.67 0.73 0.62 0.68 0.74 0.79
Hazelnut 0.36 0.79 0.73 0.86 0.94 0.99
Metal Nut 0.81 0.70 0.64 0.67 0.73 0.85

Pill 0.63 0.74 0.77 0.79 0.84 0.82
Screw 0.50 0.75 1.00 1.00 0.74 0.87

Toothbrush 0.97 0.65 0.77 1.00 1.00 0.92
Transistor 0.87 0.79 0.65 0.84 0.91 0.97

Zipper 0.82 0.75 0.87 0.88 0.94 1.00
Mean 0.67 0.76 0.75 0.84 0.89 0.91

comparison between the local and the global information.
Furthermore, it is noticeable that, in some categories where
the objects might rotate, e.g., hazelnut (Fig. 9) and screw
(Fig. 12), our method is still able to detect the abnormal
areas accurately, suggesting that our algorithm remains
robust even in rotating situations.
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Figure 1. Carpet anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps produced
by our algorithm.

Figure 2. Grid anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps produced
by our algorithm.



Figure 3. Leather anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps produced
by our algorithm.

Figure 4. Tile anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps produced
by our algorithm.



Figure 5. Wood anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps produced
by our algorithm.

Figure 6. Bottle anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps produced
by our algorithm.



Figure 7. Cable anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps produced
by our algorithm.

Figure 8. Capsule anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps produced
by our algorithm.



Figure 9. Hazelnut anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps
produced by our algorithm.

Figure 10. Metal nut anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps
produced by our algorithm.



Figure 11. Pill anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps produced
by our algorithm.

Figure 12. Screw anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps produced
by our algorithm.



Figure 13. Toothbrush anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps
produced by our algorithm.

Figure 14. Transistor anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps
produced by our algorithm.



Figure 15. Zipper anomaly localization results. From top to bottom: abnormal samples, ground-truth, and the anomaly score maps produced
by our algorithm.


