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1. Implementation Details
1.1. Network Architecture

For brightening, the detailed architecture of our E(·) is shown in Fig. 1.
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LE1 = LE(L; A1)

LE2 = LE(LE1; A2)

E(L) = LE(LE15; A16)

…

A1

A2

A16 E(L)

Figure 1: The architecture of our brightening network.

We use DSFD [15] as the face detector. DSFD uses an extended VGG16 [23] backbone, which is shown in Fig. 2. It
extracts a 6-layer multi-scale feature: conv3 3, conv4 3, conv5 3, conv fc7, conv6 2, and conv7 2.

∗Corresponding author. Our project is publicly available at: https://daooshee.github.io/HLA-Face-Website/
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For face detection, these six layers are first used as the first shot detection layers. Then, a Feature Enhance Module (FEM)
proposed by DSFD is used to transfer these six feature maps into six enhanced feature maps. The enhanced features construct
the second shot detection layers. Please refer to [15] for more details.

Input

conv3_3 conv4_3 conv5_3 conv_fc7 conv6_2 conv7_2

Figure 2: The architecture of our backbone.

Our self-supervised learning headers are added after all these six layers. The headers share the same architecture of Conv-
Conv-FC, which is shown in Fig. 3. The output channels of the convolutional layers are all 64. For the rotation prediction
pretext task, the output channel K of the last fully connected layer is 4. For the jigsaw puzzling pretext task, K = 30. For
contrastive learning, K = 128. Losses are first computed for each layer, then added up to constitute the final objective.
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Figure 3: The architecture of our self-supervised learning header.

An example of the jigsaw pretext task on E(L) is shown in Fig. 4. Given a 3×3 shuffled image E(L)jig, the extended
VGG16 backbone first extracts six feature maps, which are then processed by six headers. After that, the cross entropy loss
is computed for each FE(L)

jig . At last, the sum of the six losses is used as the final jigsaw loss on E(L).
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Figure 4: The architecture of our framework for the jigsaw pretext task on E(L).

The implementation is based on https://github.com/yxlijun/DSFD.pytorch. We implement the whole
framework using the PyTorch library.

1.2. Network Training

All experiments are based on WIDER FACE [26] and DARK FACE [27]. Our model is allowed to use the labels of
WIDER FACE, but not allowed to use the labels of DARK FACE.
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The model is first pre-trained on WIDER FACE for face detection only, then fine-tuned with both WIDER FACE and the
images of DARK FACE. Pretraining follows the same process of original DSFD [15]. For fine-tuning, the batch size is set to
8. The self supervised learning layers are initialized by the “Kaiming” method [11]. We use SGD with 0.9 momentum and
5e-4 weight decay. The learning rate is set to 1e-4 for the first 20k iterations, and 1e-5 for another 40k iterations. Fine-tuning
takes about 15 hours with two GeForce RTX 2080Ti.

In the objective, we set λdet = 1, λE(L)↔H = 0.05, λH↔D(H) = 0.05, λE(L)↑ = 0.05. Our contrastive learning is based
on MOCO [10]. Similar to MOCO, the temperature is set to τ = 0.07. Different from MOCO, the momentum coefficient m
is set to 0.99 and the number of negative samples N is set to 2048. In this way, the training process can be accelerated. For
augmentation, we follow MOCO v2 [2] to use random resized crop, color jitter, random gray scale, random gaussian blur,
and random horizontal flip.

With GeForce RTX 2080Ti and Intel Xeon E5-2650, the average inference time for 1080×720 images is 9.315s, only
0.038s (the time for E(·)) slower than the original DSFD.

1.3. Benchmarking Settings

For WIDER FACE, we use the official train/val setting. WIDER FACE is not needed for testing. For DARK FACE, we
use the official train/test setting, and further split 500 images from the training set for validation. Finally, there are 5500
images for training, 500 images for validation, and 4000 images for testing.

Following [27], performance is measured by mean Average Precision (mAP), and evaluated with the official tool of DARK
FACE: https://github.com/Ir1d/DARKFACE_eval_tools.

The code sources of all compared methods are shown in Table 1. Three unsupervised domain adaptation methods, OS-
HOT [6], Progressive DA [12], and Pseudo Labeling [14], are reimplemented based on DSFD. WIDER FACE pre-training
is used for all methods that need to be trained, including all ablation study versions, and compared methods of categories
Darkening, Unsupervised DA, and Fully Supervised.

Table 1: The code sources of compared methods.

Method Link

Faster-RCNN [21] https://github.com/hdjsjyl/face-fasterrcnn.pytorch
SSH [19] https://github.com/dechunwang/SSH-pytorch
RetinaFace [5] https://github.com/biubug6/Pytorch_Retinaface
SRN [3] https://github.com/ChiCheng123/SRN
SFA [18] https://github.com/shiluo1990/SFA
PyramidBox [24] https://github.com/yxlijun/Pyramidbox.pytorch
Small Hard Face [30] https://github.com/bairdzhang/smallhardface
DSFD [15] https://github.com/yxlijun/DSFD.pytorch

SICE [1] https://github.com/csjcai/SICE
RetinexNet [25] https://github.com/weichen582/RetinexNet
KinD [29] https://github.com/zhangyhuaee/KinD
LIME [9] https://sites.google.com/view/xjguo/lime
Zero-DCE [8] https://github.com/Li-Chongyi/Zero-DCE
MF [7] https://github.com/baidut/BIMEF

MUNIT [13] https://github.com/NVlabs/MUNIT
CycleGAN [31] https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
CUT [20] https://github.com/taesungp/contrastive-unpaired-translation
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2. More Performance Analysis
2.1. More Comparison Results

In this section, we present more subjective comparison results. As shown in Fig. 5-10, our method can better locate the
target faces and less recognize non-face objects as faces.

In Fig. 10, we show an interesting failure case where we “wrongly” detect a face on an advertisement board. This is
because only the faces of real pedestrians are labeled in DARK FACE, while all kinds of faces are labeled in WIDER FACE.

(a) Ground truth (b) SICE (c) RetinexNet (d) KinD

(e) LIME (f) ZERO-DCE (g) MF (h) Ours

Figure 5: More qualitative comparison of different enhancement-based methods. (a) Input low light image and the ground
truth boxes. (b)-(g) Results of low-light enhancement methods with DSFD. (h) Our result. The color of the bounding boxes
indicates confidence. Yellow indicates high confidence, while green vice versa.
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(a) Ground truth (b) SICE (c) RetinexNet (d) KinD

(e) LIME (f) ZERO-DCE (g) MF (h) Ours

Figure 6: More qualitative comparison of different enhancement-based methods. (a) Input low light image and the ground
truth boxes. (b)-(g) Results of low-light enhancement methods with DSFD. (h) Our result. The color of the bounding boxes
indicates confidence. Yellow indicates high confidence, while green vice versa.
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(a) Ground truth (b) SICE (c) RetinexNet

(e) LIME (f) ZERO-DCE (g) MF (h) Ours

(d) KinD

Figure 7: More qualitative comparison of different enhancement-based methods. (a) Input low light image and the ground
truth boxes. (b)-(g) Results of low-light enhancement methods with DSFD. (h) Our result. The color of the bounding boxes
indicates confidence. Yellow indicates high confidence, while green vice versa.
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(a) Ground truth (b) SICE (c) RetinexNet

(e) LIME (f) ZERO-DCE (g) MF (h) Ours

(d) KinD

Figure 8: More qualitative comparison of different enhancement-based methods. (a) Input low light image and the ground
truth boxes. (b)-(g) Results of low-light enhancement methods with DSFD. (h) Our result. The color of the bounding boxes
indicates confidence. Yellow indicates high confidence, while green vice versa.
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(a) Ground truth (b) SICE (c) RetinexNet (d) KinD

(e) LIME (f) ZERO-DCE (g) MF (h) Ours

Figure 9: More qualitative comparison of different enhancement-based methods. (a) Input low light image and the ground
truth boxes. (b)-(g) Results of low-light enhancement methods with DSFD. (h) Our result. The color of the bounding boxes
indicates confidence. Yellow indicates high confidence, while green vice versa.
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(a) Ground truth (b) SICE (c) RetinexNet (d) KinD

(e) LIME (f) ZERO-DCE (g) MF (h) Ours

Figure 10: More qualitative comparison of different enhancement-based methods. (a) Input low light image and the ground
truth boxes. (b)-(g) Results of low-light enhancement methods with DSFD. (h) Our result. The color of the bounding boxes
indicates confidence. Yellow indicates high confidence, while green vice versa.
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2.2. Precision-Recall Curves for Ablation Study

The Precision-Recall (PR) curves for ablation study are shown in Fig. 11. The full version of our framework achieves the
best performance, demonstrating the effectiveness of our technical designs.
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Figure 11: Precision-Recall (PR) curves for ablation study on DARK FACE.

2.3. Performance on WIDER FACE

Our model can detect normal light faces as well. To avoid over-exposure, we skipE(·) when the average pixel value of the
image is higher than 45, which does not affect our original detection on DARK FACE. As shown in Table 2, the performance
on WIDER FACE is even improved, which may be because that our adaptation makes the model more robust to noise.

Table 2: AP (%) on WIDER FACE

Easy Medium Hard

DSFD 94.6 93.7 88.0
Ours 95.0 93.9 88.3

2.4. Real World Cases

Given a random unseen image Im, our model can quickly adapt to it by fast one-shot fine-tuning. We first crop patches
from Im, treat these patches as the new L domain, then fine-tune the model with LE(L)↔H , LE(L)↑, and the losses of E(·)
for 100 steps (about 2 minutes). As shown in Fig. 12, the clothes button wrongly detected by DSFD and our model can be
corrected after one-shot fine-tuning.

DSFD Ours w/ One-shotTest image Enhanced for 
better visualization

Figure 12: Effectiveness of fast one-shot adaptation.

2.5. Compared with UG2 Solutions

Details of UG2 solutions are in [27]. Compared with UG2 top 3-10 teams, our fine-tuned baseline (46% mAP) performs
better probably because: (1) Baseline: U-Net [22] (Team PHI-AI) or LIME [9] + DPSR [28] + BM3D [4] (Team tjfirst) may
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distort details and hurt performance. (2) Domain gap: the testing set is more difficult than the training set. Many faces in the
testing set are much smaller. Some solutions may over-fit the training set, while our method has better generality.

Compared with UG2 top 1-2 teams, the top 2 teams use very strong backbones, state-of-the-art enhancement methods,
and advanced settings, e.g. different maximum testing scales. We instead use the original settings of DSFD.

2.6. Improving Supervised Model

For fine-tuning DSFD with labels, by combining with our adaptation, the mAP improves from 0.460 to 0.486.

2.7. Generalization

Our joint high-low adaptation can also be extended to other tasks. For example, the AP of COCO-pretrained [16] Faster-
RCNN [21] on ExDark [17] is 29.261. By applying our joint high-low adaptation, the performance can be improved to 30.056
as shown in Table 3.

Table 3: Adapting Faster-RCNN from COCO to ExDark.

AP AP50 AP75

original 29.261 59.784 24.538
w/ Ours 30.056 60.746 25.835
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