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1. Experimental Details
Dataset: We evaluate the proposed method on three
datasets, includinig ImageNet [2], Places365 [13] and
DTD [1]. For each dataset, two different subsets sam-
pled from the validation set are used as target images, one
for quantitative evaluation and the other one for the user
study. ImageNet is the most widely used object recognition
dataset, containing 1, 000 image categories. We randomly
sample one validation image per category, producing a set
of 1, 000 images which are used as target images. This is de-
noted as the ImageNet-A set. ImageNet-B is composed of
20 randomly selected images from ImageNet-A, which are
used for user studies. Places365 is a popular scene images
dataset, consisting of 365 scene categories. Three samples
are randomly selected from each category in the validation
set, producing a set of 1095 images, denoted as Places365-
A. 20 images are then randomly extracted to construct a user
study dataset, denoted as Places365-B. DTD is a texture
dataset, containing 47 categories inspired by human percep-
tion. One image is randomly chosen per category from the
validation set (47 images in total, DTD-A) and 20 images
are randomly selected from them for user studies (DTD-B).

Classifier: The default classifier used in this work is
ResNet-50 [5] pre-trained on ImageNet for object images
and Places365 for scene images1. We also trained a ResNet-
50 on DTD, following the settings of [5]. To test the ro-
bustness of IMAGINE, we have used another two classi-
fiers: the robust classifier of [10] and shape robust clas-
sifier of [4]2. The former one is trained using adversarial
examples and the latter one is trained using the Stylized-
ImageNet, to overcome the shape-bias of the standard clas-
sifier. Finally, we also ablate the importance of the net-

*Work done during internship at Adobe Research
1The model pre-trained on ImageNet is provided by PyTorch

(https : / / pytorch . org / docs / stable / torchvision /
models.html) and on Places365 by (https://github.com/
CSAILVision/places365)

2These models are available from https://github.com/
MadryLab / robustness _ applications and https :
//github.com/rgeirhos/Stylized-ImageNet

work architecture, by implementing IMAGINE with the
VGG19 [11] and AlexNet [7] models, which are publicly
available in PyTorch3.

Evaluation metric: Several quantitative evaluation metrics
are used to measure the effectiveness of IMAGINE. The
inception score (IS) [9] and FID [6] are used to simulta-
neously characterize the quality and diversity of generated
images. For each method, 5 images are synthesized per
target image. For the computation of FID, the real dataset
used to compare with generated results is collected by ran-
domly sampling 5 images per categories from the training
set for ImageNet, and 15 images per categories from the
training set for Places365. Meanwhile, for target domains
that have only a few examples available, FID is not the best
metric for measuring the generation quality. Therefore,
we also compute the average LPIPS [12] over multiple
pairs of generated images and their corresponding targets
to measure the diversity. In addition, user studies are con-
ducted to evaluate how realistic and diverse our generated
results compared with different alternatives via Amazon
Mechanical Turk. Images used for user study is ac-
cessible in path “./user study/object/object.html”,
“./user study/scene/scene.html”,
“./user study/texture/texture.html”. The interfaces
used for user studies are shown in Figure 1.

Data pre-processing: All images are first converted to
[0.0, 1.0] from [0, 255] and then normalized by subtracting
the mean ([0.485, 0.456, 0.406]) and divided by the stan-
dard deviation (0.229, 0.224, 0.225]) of each RGB color
channel. Data augmentations of randomly cropping and
flipping are used for the target image per iteration for im-
age synthesis.

Structure of the discriminator: Figure 2 and Table 1 show
the details of our network architecture.

3https://pytorch.org/docs/stable/torchvision/
models.html



2. More Comparisons

In the main paper, we mainly show the results on Im-
ageNet and Places365. Additionally, we present more re-
sults on the texture dataset DTD in Figure 3. The goal of
texture synthesis is to generate similar results with the spa-
tial arrangement reorganized. The method of Gatys et al. [3]
tends to break the texture pattern into pieces and fails to pre-
serve the complete structure of the texture (e.g. “bubbly”).
On the other hand, the SinGAN [8] only performs minor
editing on the target image without generating significantly
new spatial arrangements. For example, the four corners of
the synthesized image are identical to their corresponding
target sample. In contrast, the IMAGINE more effectively
synthesizes a different image of the same texture, which is
preferred by more users as shown in Table 2.

We also show more comparisons on ImageNet and
Places365 in Figure 4 and 5.

3. Ablation study

Several ablations are performed to evaluate the contri-
bution of the different components of IMAGINE on image
synthesis.

Classification loss: The IMAGINE enforces a class con-
sistency in two ways: the cross-entropy loss Eq. (1) of the
paper and the similarity with the target image which is ob-
viously an example of its class. In preliminary experiments,
we note that it makes little difference between using the
ground truth class y0 of the target image and the class pre-
dicted by the classifier for the target image x0 as y∗ in the
cross-entropy loss. This is because most images can be clas-
sified correctly, even when this is not the case, images of the
predicted and ground truth class share similar features. We
want to investigate whether the cross entropy loss is able to
truly influence the synthesized image, by specifying a class
different from the ground truth y0 and predicted y∗. Fig-
ure 6 shows two examples, where the labels “zebra” and
“snake” are used for a horse and grass target image, respec-
tively. On the horse image, black-and-white stripes are gen-
erated and semantically fail on the body of the horse. On
the grass, a snake outline is generated. Although the quality
of the generated result is not good enough to resemble the
target class in the sense of the realism, it should be noted
that it is always difficult to generate a target class image
without any image of this class to optimize. However, these
experiments show that the cross entropy loss has an effect
on the generated images.

Loss functions: Figure 7 and Table 3 summarize the re-
sults of an ablation study for the importance of the vari-
ous loss components. These results are based on ResNet-
50 on ImageNet-A. The baseline is a basic model inver-
sion method that only uses the loss Eq. (1) in the paper.

Figure 7 shows that this produces very poor results. We
next sorely introduce Rpc in Eq. (9) of the paper, i.e. us-
ing λ = 0, which is denoted as baseline+D. This substan-
tially improves the image quality but is insufficient to re-
construct meaningful objects. Note the “absorption by the
background” problem discussed in the paper for the Sin-
GAN.

Next, we remove the discriminator and introduce the fea-
ture distribution matching regularizer of Eq. (5), leading to
the loss of Eq. (9) with γ = 0, which is denoted as base-
line+H. This results in a dramatic improvement of object
realism. It shows that, unlike patch matching, the constraint
of similar activations between the target and synthesized
images at all levels of the network is critical for object co-
herence. Note that, for the first time, the objects are not
scattered into pieces or absorbed by the background.

Finally, we reintroduce the patch discriminator and ad-
versarial loss, leading to the full IMAGINE algorithm. This
further improves the quality of the reconstructed objects, in
particular in terms of fine details. Table 3 confirms the con-
clusions of the qualitative analysis of Figure 7. The base-
line+H drastically increases (decreases) IS (FID) and the
addition of discriminator and adversarial loss further im-
proves the quality of the synthesized images, but by a much
smaller amount. Overall, these results show that matching
distributions at the different semantic levels of the network
representation is critically important to achieve object con-
sistency. Note that baseline+H is different from the image-
guided version of DeepInverion described in the paper, be-
cause the latter keeps the Eq. (3) that is the key speciality
of DeepInverion. We observe that matching to the training
distribution hurts the quality to some extent.

Choice of the classifier: IMAGINE is a generic method,
which can used with any pre-trained classifier available in
the literature. To determine the impact of the pre-trained
classifier, we perform an ablation in terms of two aspects:
the pre-training scheme and the classifier architecture. We
start by comparing implementations of IMAGINE with
three classifiers: AlexNet, VGG, and ResNet. Figure 8 and
table 4 summarize the results of these experiments. AlexNet
is significantly weaker than the other two networks which
synthesize images of similar quality, with a slight advantage
for the ResNet. The performance gap can be explained by
the fact that AlextNet is a shallower network and thus less
able to capture the diversity of semantic features extracted
by deeper classifiers. This again emphasizes the importance
of matching distributions across multiple semantic levels.

We next choose the ResNet and investigate the impact of
two types of robust training. The SIN ResNet [4] is trained
on a stylized version ImageNet. This aims to combat the
bias towards texture representations of standard CNN train-
ing, favoring the learning of a stronger representation of
shape. The robust ResNet [10] uses adversarial training



to learn more class-discriminative features. Although vi-
sually it is hard to identify the best of three ResNet training
schemes, the quantitative comparison indicates that robust
models can generate higher quality and more diverse re-
sults. However, the differences are not large. Overall, these
results suggest that IMAGINE is quite robust to the clas-
sifier architecture and its training scheme. As long as the
classifier is not too shallow, other variables are less likely to
greatly affect the quality of synthesized images.

4. Limitations

Though we have shown that our approach outperforms
existing GAN-based and inversion-based methods across
different image domains, honestly ‘still’ might be better,
there are a few limitations.

“Ghost” issue: One limitation of IMAGINE is that some-
times some ghosts are generated, e.g. “fox squirrel” in Fig-
ure 4 and “jellyfish” in Figure 6 in the main paper. We vi-
sualized the attribution map of the results given in Figure
9 and found that the classifier treats those ghosts as back-
ground and so ignores them. We argue that this can be
avoided by using a more robust foreground-sensitive clas-
sifier and can benefit from future more advanced classifier.

Computational cost: Here we discuss the time cost based
on a NVIDIA TITAN Xp and image resolution of 224 ×
224. SinGAN and DGP train a model one time per target
image and generate results by feedforward passing, which
is faster than the optimization-based IMAGINE (about 10
minutes for one optimization to generate a batch of high-
quality synthesized results, per target image).

However, for SinGAN, training a pyramid GAN of 9
scales of images takes nearly 2 hours. Hence, our approach
(IMAGINE) is a faster option if we have fewer images to
generate. Also, IMAGINE can generate multiple images in
parallel. For example, IMAGINE supports maximum batch
size of 16 on a single NVIDIA TITAN Xp. So 16 images
can be synthesized simultaneously in 10 minutes by one op-
timization. What is the worse for SinGAN is that the time
and memory increase exponentially with the image size be-
cause of its multi-scale pyramid structure. While DGP takes
only 3 minutes to finetune the generator, it still requires to
learn individual generator (i.e., one BigGAN) for each tar-
get example, which is super heavy for disk storage. This
is also true for SinGAN, training individual generators for
individual target images.

For future work, we plan to evacuate more unknown
knowledge inside the classifier that can benefit the image
synthesis which in turn might also reward improvements on
classification performance.

(a) Objects

(b) Scene

(c) Texture
Figure 1: Interface

block1 block2 block3head tail
128

128
128

128

3

1

input

Figure 2: Architecture details of the discriminator exemplified by
an input image with resolution of 224× 224.
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Table 1: Architecture details of the discriminator
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Figure 3: Texture synthesis comparison of different methods.
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Figure 4: Object generation comparison of different methods, where two randomly results are shown for each method.
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Figure 5: Scene generation comparison of different methods, where two randomly results are shown for each method.
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Figure 6: Ablation study on classification loss of IMAGINE. Conflict labels are assigned between the classification loss and target examples.
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Figure 7: Ablation study on different components of IMAGINE.
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Figure 8: Ablation study on different models and architectures of IMAGINE.

Figure 9: Object position control. Four different target positions (center) are used to supervise the position of objects, jellyfish (top-center)
or hummingbird (bottom-center) on the generated images. The corresponding attribution maps are associated at two sides.


