
Learning Compositional Radiance Fields of Dynamic Human Heads
– Supplemental Document –

Ziyan Wang1,3 Timur Bagautdinov3 Stephen Lombardi3 Tomas Simon3

Jason Saragih3 Jessica Hodgins1,2 Michael Zollhöfer3
1Carnegie Mellon University 2Facebook AI Research 3Facebook Reality Labs Research

A. Video Results
Please refer to the videos directory for video results

and index.html for a video navigation. The results can
also be found on our project page 1.

B. Training Details
B.1. Network Architecture

There are three main neural networks used in our meth-
ods: 1) Encoder, that regresses image input to the statistics
µ,σ of a latent space vector z ∈ R256; 2) Decoder, a 3D
convolutional network that regresses the latent vector z to a
coarse-level volume Vp of log differential opacity σ̃p, color
c̃p, and spatial scene features fp, fvp; 3) Refinement MLP,
that takes in the coordinate of a spatial location p as well
as its corresponding spatial local feature from the coarse-
level volume fp, f

v
p and outputs the fine-level log differen-

tial opacity σp and color cp.
For the image encoder and volume decoder, please re-

fer to Table 1 and Table 2 for their architecture. To better
model the view-dependent effects, we employ two decoders
to regress the color and opacity at the coarse level. The com-
mon structure of each decoder is shown in Table 2. For the
color decoder, the input is the concatenation of the latent
vector z∈R256 and the camera view direction v∈R3, thus
the final input size is N c

in = 256 + 3 and the output size is
N c

out = 3, with a parallel branch producing view-dependent
spatial scene features fvp∈R32. Similarly, the opacity de-
coder only takes the latent vector z∈R256 as input and re-
gresses opacity σp∈R and view-independent spatial scene
features fp∈R32 from its two branches respectively. To re-
strict the regressed color c̃p to be non-negative, we apply a
ReLU function after the last layer that directly outputs it.

In Figure B.1, we show the structure of the Refine-
ment MLP. The spatial scene features fp, f

v
p are extracted

from the feature voxel Vp with a continuous coordinate
p ∈ R3 using tri-linear interpolation. Log differential opac-
ity σp ∈ R is regressed from the last fully-connected layer

1https://ziyanw1.github.io/hybrid nerf/

of the top branch and no non-linearity is applied. The spa-
tial color value cp is the output of the bottom branch and
ReLU is applied afterwards to guarantee the regressed value
is non-negative. At the beginning of the refinement net-
work, a concatenation of a positional encoding of position
p and its corresponding view-independent spatial scene fea-
ture fp. The color branch network learns to explain view-
dependent effects by having additional inputs in addition
to the positional encoding, such as the camera view v and
view-dependent spatial scene feature fvp at position p. Note
that the adapted version of NeRF, which we us as a baseline,
shares exactly the same architecture as shown in Figure B.1,
except that instead of fp, fvp it uses the global latent vector
z as additional input.

Encoder
1 Conv2d(9, 32)
2 Conv2d(32, 64)
3 Conv2d(64, 128)
4 Conv2d(128, 128)
5 Conv2d(128, 256)
6 Conv2d(256, 256)
7 Conv2d(256, 256)
8 Flatten()
9 Linear(256x4x2, 512)

10 Linear(512, 256) Linear(512, 256)

Table 1. Encoder architecture. Each Conv2d layer in the en-
coder has a kernel size of 4, stride of 2 and padding of 1. After
each layer, except for the last two parallel fully-connected layers, a
Leaky ReLU [2] activation with a negative slope of 0.2 is applied.
The last two parallel fully-connected layers produce, respectively,
µ and σ.

B.2. Hyperparameter Settings

We use Adam [1] with a learning rate 1e−4, and β1 =
0.9, β2 = 0.999. All the models are trained for approxi-
mately 70−100K iterations, each batch containing 64×64
rays. For each ray, we then uniformly sample 128 query
locations for the coarse level, and 32 more locations for



cp

256 256 256 256 256 256 256 256

256 128

fp

𝜙(p)

𝜙(v)

fpv

σp

Concatenation

Linear Layer

1

3

Linear Layer w/ ReLU

32

63

27

32

Figure 1. Refinement MLP architecture. Each blue box is a fully-connected layer and the number on top of each box is the output size
of that layer. Blue box with gray tail is a linear layer with ReLU activation. Boxes in other color stand for different inputs and the size is
marked on top.

Decoder
1 Linear(NX

in, 1024)
2 Reshape(1024, 1, 1, 1)
3 ConvTrans3d(1024, 512) ConvTrans3d(1024, 512)
4 ConvTrans3d(512, 512) ConvTrans3d(512, 512)
5 ConvTrans3d(512, 256) ConvTrans3d(512, 256)
6 ConvTrans3d(256, 256) ConvTrans3d(256, 256)
7 ConvTrans3d(256, 128) ConvTrans3d(256, 128)
8 ConvTrans3d(128, NX

out) ConvTrans3d(128, 32)

Table 2. Decoder architecture. Each layer is followed by a Leaky
ReLU [2] activation with a negative slope of 0.2 except for the last
two parallel layers. Each ConvTrans3d layer has a kernel size
of 4, a stride of 2 and a padding of 1. NX

in stands for the input
feature size and NX

out is the output size. X here is a placeholder
for color or opacity, X ∈ {c, σ}.

the fine level using our sampling scheme. We set λf =
0.1, λc = 0.1 and λKL = 0.001 Training on a sequence of
360 frames under 93 camera views with 1024× 667 resolu-
tion takes approximately 3-4 days on a single NVidia-V100-
32GB GPU. All our models are implemented in PyTorch.

C. Novel View Synthesis
C.1. Qualitative Results

We show more qualitative results in a larger size than in
the main document in Figure 2 and Figure 3. Please also
refer to videos/rot zoom for more video results.

D. Animation
D.1. Latent Space Sampling

We show more results of expression sampling in Figure 4
and Figure 5. Please see videos/sample interp -

latent/interp X.mp4 and videos/sample in-
terp latent/sample X.mp4 for video results of sam-
pling in latent space and interpolation. X here could
be subj1 or subj2. The first video contains 12 uniform
keyframe expressions that are directly sampled from the la-
tent space. Then, between each keyframe, we linearly in-
terpolate 10 more frames to create the video. The second
videos contains free view rendering of several sampled ex-
pressions.

D.2. Landmark-driven Animation

We used a PointNet [3]-like encoder as a base archi-
tecture for the keypoint encoder. Compared to the origi-
nal work, our inputs are different in three aspects: 1) The
points are in 2D, 2) The order of each point is fixed rather
than arbitrary, 3) All points are roughly aligned to a canon-
ical pose. To simplify the problem, we use the T-Net in
the PointNet as the encoder that regresses the latent code
from a set of points. We show the architecture in Ta-
ble 3. More results of keypoint-driven animation can be
found in Figure 6. Please refer to videos/kps ren-
der/subj1.mp4 more video results. In the video, the
2d keypoints in the blue bounding box are used as input to
the keypoint encoder. The image in the middle is the output
of our model and the image on the right most column is the
ground truth. As we can see, the decoder in our method can
also be driven by inputs from other modalities.

D.3. Fitting New Sequences

Please see videos/sequence fitting/X -
noft.mp4 for rendering results of the model without
finetuning and videos/sequence fitting/X -
enc.mp4 for rendering results of the model with
encoder-only finetuning. X could be either subj1 or subj2.



Kps Encoder
1 Conv1d(2, 64)
2 Conv1d(64, 128)
3 Conv1d(128, 256)
4 Conv1d(256, 512)
5 Conv1d(512, 1024)
6 MaxPool1d()
7 Flatten()
8 Linear(1024, 512)
9 Linear(512, 512)
10 Linear(512, 256)

Table 3. Keypoint Encoder architecture. Each layer is followed
by a ReLU except for the last fully-connected layer. Each Conv1d
layer has a kernel size of 1, a stride of 1 and a padding of 0.

In both videos, the images in the red bounding boxes
serve as inputs. The image in the middle is the output of
our model and the image on the right most column is the
ground truth. As we can see, the model without finetuning
can achieve reasonable performance on fitting the new
sequence. And with only encoder finetuning, the encoder
quickly adapts to the latent space of the decoder on the
novel sequence and creates much smoother results. For
free view rendering results of both models, please see
videos/sequence fitting/X enc fr.mp4 and
videos/sequence fitting/X noft fr.mp4

References
[1] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[2] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rec-
tifier nonlinearities improve neural network acoustic models.
In Proc. icml, volume 30, 2013.

[3] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2017.



Figure 2. Qualitative comparison of rendered images.



Figure 3. Qualitative comparison of rendered images.



Figure 4. Rendering results of direct sampling in latent space.



Figure 5. Rendering results of direct sampling in latent space.



Figure 6. Keypoint-driven animation.


