
Supplementary Material for
MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers

Huiyu Wang1∗ Yukun Zhu2 Hartwig Adam2 Alan Yuille1 Liang-Chieh Chen2

1Johns Hopkins University 2Google Research

In this supplementary material, we mainly provide more
visualizations, runtimes, and analyses on COCO [6] valida-
tion set. In addition, we include more technical details of
our architectures and training settings for the experiments
in our main paper.

1. Panoptic Segmentation Results

Similar to the case study in Fig. 2 of the main paper, we
provide more panoptic segmentation results of our MaX-
DeepLab-L and compare them to the state-of-the-art box-
free method, Axial-DeepLab [9], the state-of-the-art box-
based method, DetectoRS [7], and the first Detection Trans-
former, DETR [1] in Fig. 1 and Fig. 2. MaX-DeepLab
demonstrates robustness to the challenging cases of sim-
ilar object bounding boxes and nearby objects with close
centers, while other methods make systematic mistakes be-
cause of their individual surrogate sub-task design. MaX-
DeepLab also shows exceptional mask quality, and per-
forms well in the cases of many small objects. Similar to
DETR [1], MaX-DeepLab fails typically when there are too
many object masks.

2. Runtime

In Tab. 1, we report the end-to-end runtime (i.e., infer-
ence time from an input image to final panoptic segmen-
tation) of MaX-DeepLab on a V100 GPU. All results are
obtained by (1) a single-scale input without flipping, and
(2) built-in TensorFlow library without extra inference op-
timization. In the fast regime, MaX-DeepLab-S takes 67
ms with a typical 641×641 input. This runtime includes 5
ms of postprocessing and 15 ms of batch normalization that
can be easily optimized. This fast MaX-DeepLab-S does
not only outperform DETR-R101 [1], but is also around 2x
faster. In the slow regime, the standard MaX-DeepLab-S
takes 131 ms with a 1025×1025 input, similar to Panoptic-
DeepLab-X71 [2]. This runtime is also similar to our run
of the official DETR-R101 which takes 128 ms on a V100,

∗Work done while an intern at Google.
1https://github.com/facebookresearch/detr

including 63 ms for box detection and 65 ms for the heavy
mask decoding.

3. Mask Output Slot Analysis
In this section, we analyze the statistics of all N = 128

mask prediction slots using MaX-DeepLab-L. In Fig. 3,
we visualize the joint distribution of mask slot firings and
the classes they predict. We observe that the mask slots
have imbalanced numbers of predictions and they special-
ize on ‘thing’ classes and ‘stuff’ classes. Similar to this
Mask-Class joint distribution, we visualize the Mask-Pixel
joint distribution by extracting an average mask for each
mask slot, as shown in Fig. 4. Specifically, we resize all
COCO [6] validation set panoptic segmentation results to a
unit square and take an average of masks that are predicted
by each mask slot. We split all mask slots into three cat-
egories according to their total firings and visualize mask
slots in each category. We observe that besides the class-
level specialization, our mask slots also specialize on cer-
tain regions of an input image. This observation is similar
to DETR [1], but we do not see the pattern that almost all
slots have a mode of predicting large image-wide masks.

4. Mask Head Visualization
In Fig. 5 of the main paper, we visualize how the mask

head works by training a MaX-DeepLab with only D = 3
decoder feature channels (for visualization purpose only).
Although this extreme setting degrades the performance
from 45.7% PQ to 37.8% PQ, it enables us to directly vi-
sualize the decoder features as RGB colors. Here in Fig. 5
we show more examples using this model, together with
the corresponding panoptic sementation results. We see a
similar clustering effect of instance colors, which enables
our simple mask extraction with just a matrix multiplication
(a.k.a. dynamic convolution [8, 10, 4, 11]).

5. Transformer Attention Visualization
We also visualize the M2P attention that connects the

transformer to the CNN. Specifically, given an input im-
age from COCO validation set, we first select four output



Original Image MaX-DeepLab-L Axial-DeepLab [9] DetectoRS [7] DETR [1] Ground Truth

Mask Transformer Box-Free Box-Based Box Transformer
51.1% PQ 43.4% PQ 48.6% PQ 45.1% PQ

MaX-DeepLab segments the baby with its occluded leg correctly. DetectoRS and DETR merge the two people into one instance,
probably because the two people have similar bounding boxes. In addition, DETR introduces artifacts around the head of the horse.

MaX-DeepLab correctly segments all the boards, the zebras, and the people. All other methods fail in these challenging cases of similar
bounding boxes and nearby object centers.

MaX-DeepLab generates a high quality mask for the cat, arguably better than the ground truth. Axial-DeepLab predicts cat pixels on
the right of the image, as the center of the cat is close to the center of the bike. And DETR misses the cat and introduces artifacts.

MaX-DeepLab also performs well in the presence of many small instances.

Figure 1. Comparing MaX-DeepLab with other representative methods on the COCO val set. (Colors modified for better visualization).



Method Backbone Input Size Runtime (ms) PQ [val] PQ [test]

Fast Regime

Panoptic-DeepLab [2] X-71 [3] 641×641 74 38.9 38.8
MaX-DeepLab-S MaX-S 641×641 67 46.4 46.7

Slow Regime

DETR [1] RN-101 1333×800 1281 45.1 46.0
Panoptic-DeepLab [2] X-71 [3] 1025×1025 132 39.7 39.6
MaX-DeepLab-S MaX-S 1025×1025 131 48.4 49.0

Table 1. End-to-end runtime. PQ [val]: PQ (%) on COCO val set. PQ [test]: PQ (%) on COCO test-dev set.

masks of interest from the MaX-DeepLab-L panoptic pre-
diction. Then, we probe the attention weights between the
four masks and all the pixels, in the last dual-path trans-
former block. Finally, we colorize the four attention maps
with four colors and visualize them in one figure. This pro-
cess is repeated for two images and all eight attention heads
as shown in Fig. 6. We omit our results for the first trans-
former block since it is mostly flat. This is expected because
the memory feature in the first transformer block is unaware
of the pixel-path input image at all. Unlike DETR [1] which
focuses on object extreme points for detecting bounding
boxes, our MaX-DeepLab attends to individual object (or
stuff) masks. This mask-attending property makes MaX-
DeepLab relatively robust to nearby objects with similar
bounding boxes or close mass centers.

6. More Technical Details
In Fig. 7, Fig. 8, and Fig. 9, we include more details of

our MaX-DeepLab architectures. As marked in the figure,
we pretrain our model on ImageNet [5]. The pretraining
model uses only P2P attention (could be a convolutional
residual block or an axial-attention block), without the other
three types of attention, the feed-forward network (FFN), or
the memory. We directly pretrain with an average pooling
followed by a linear layer. This pretrained model is used as
a backbone for panoptic segmentation, and it uses the back-
bone learning rate multiplier we mentioned in Sec. 4 of the
main paper. After pretraining the CNN path, we apply (with
random initialization) our proposed memory path, includ-
ing the memory, the three types of attention, the FFNs, the
decoding layers, and the output heads for panoptic segmen-
tation. In addition, we employ multi-head attention with
8 heads for all attention operations. In MaX-DeepLab-L,
we use shortcuts in the stacked decoder. Specifically, each
decoding stage (resolution) is connected to the nearest two
previous decoding stage outputs of the same resolution.

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In ECCV, 2020.
[2] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,

Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for
Bottom-Up Panoptic Segmentation. In CVPR, 2020.

[3] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In CVPR, 2017.

[4] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V
Gool. Dynamic filter networks. In NeurIPS, 2016.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, 2012.

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014.

[7] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detec-
tors: Detecting objects with recursive feature pyramid and
switchable atrous convolution. arXiv:2006.02334, 2020.

[8] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional convo-
lutions for instance segmentation. In ECCV, 2020.

[9] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,
Alan Yuille, and Liang-Chieh Chen. Axial-DeepLab: Stand-
Alone Axial-Attention for Panoptic Segmentation. In ECCV,
2020.

[10] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-
hua Shen. SOLOv2: Dynamic and fast instance segmenta-
tion. In NeurIPS, 2020.

[11] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan
Ngiam. Condconv: Conditionally parameterized convolu-
tions for efficient inference. In NeurIPS, 2019.



Original Image MaX-DeepLab-L Axial-DeepLab [9] DetectoRS [7] DETR [1] Ground Truth

Mask Transformer Box-Free Box-Based Box Transformer
51.1% PQ 43.4% PQ 48.6% PQ 45.1% PQ

Similar to DETR [1], MaX-DeepLab fails typically when there are too many masks to segment in an image. This example contains
more than 200 masks that should be predicted, mostly people and ties.

In this failure case, MaX-DeepLab mistakes the birds for kites in the sky, probably because the birds are too small.

Figure 2. Failure cases of MaX-DeepLab on the COCO val set.

1 20 40 60 80 100 120 133
Class ID

1

32

64

96

128

M
as

k 
Sl

ot
 ID

Figure 3. The joint distribution for our N = 128 mask slots and 133 classes with 80 ‘thing’ classes on the left and 53 ‘stuff’ classes on the
right. We observe that a few mask slots predict a lot of the masks. Some mask slots are used less frequently, probably only when there are
a lot of objects in one image. Some other slots do not fire at all. In addition, we see automatic functional segregation between ‘thing’ mask
slots and ‘stuff’ mask slots, with a few exceptions that can predict both thing and stuff masks.



Mask Slot 71 Mask Slot 106 Mask Slot 125 Mask Slot 69 Mask Slot 116 Mask Slot 4 Mask Slot 27 Mask Slot 103

Most
Firings
(sorted)

Mask Slot 84 Mask Slot 67 Mask Slot 23 Mask Slot 101 Mask Slot 127 Mask Slot 28 Mask Slot 105 Mask Slot 122

Medium
Firings
(sorted)

Mask Slot 25 Mask Slot 66 Mask Slot 98 Mask Slot 110 Mask Slot 63 Mask Slot 95 Mask Slot 40 Mask Slot 79

Few
Firings
(sorted)

Figure 4. The average masks that each mask slot predicts, normalized by image shape. Mask slots are categorized by their total number of
firings and sorted from most firings to few firings. We observe spatial clustered patterns, meaning that the mask slots specialize on certain
regions of an input image. For example, the most firing mask slot 71, focusing on the center of an image, predicts almost all 80 ‘thing’
classes but ignores ‘stuff’ classes (Fig. 3). The top three categories are tennis rackets, cats, and dogs. The second firing mask slot 106
segments 14 classes of masks on the bottom of an image, such as road, floor, or dining-tables. The third firing mask slot 125 concentrates
99.9% on walls or trees that are usually on the top of an image. The fourth firing mask slot 69 focuses entirely on the person class and
predicts 2663 people in the 5000 validation images.

Original Image Decoder Feature g Panoptic Seg. Original Image Decoder Feature g Panoptic Seg.

Figure 5. More visualizations of the decoder feature g with D = 3. Similar to Fig. 5 of the main paper, we observe a clustering effect of
instance colors, i.e., pixels of the same instance have similar colors (features) while pixels of different instances have distinct colors. Note
that in this extreme case of D = 3 (that achieves 37.8% PQ), there are not enough colors for all masks, which causes missing objects or
artifacts at object boundaries, but these artifacts do not present in our normal setting of D = 128 (that achieves 45.7% PQ).



Original Image Head 1 Head 2 Head 3 Head 4

Panoptic Segmentation Head 5 Head 6 Head 7 Head 8

Attention maps for three people (left, middle, right) on a playing field.

Original Image Head 1 Head 2 Head 3 Head 4

Panoptic Segmentation Head 5 Head 6 Head 7 Head 8

Attention maps for two people (woman, man) cutting a cake on a table.

Figure 6. Visualizing the transformer M2P attention maps for selected predicted masks. We observe that head 2, together with head 5, 7,
and 8, mainly attends to the output mask regions. Head 1, 3, and 4 gather more context from broader regions, such as semantically-similar
instances (scene 1 head 1) or mask boundaries (scene 2 head 4). In addition, we see that head 6 does not pay much attention to the pixel-
path, except for some minor firings on the playing field and on the table. Instead, it focuses more on M2M self-attention which shares the
same softmax with M2P attention (Equ. (14) of the main paper).



Conv
1×1

Conv
1×1

(𝐻×𝑊×16)×8

𝐻×𝑊×256

𝐻×𝑊×128
𝐻×𝑊×128

(𝐻×𝑊×16)×8
𝐻×𝑊×128

𝐻×𝑊×256

𝐻×𝑊×256
Multi-Head Attention

Height-Axis
Multi-Head Attention

Width-Axis

Concat Concat
𝒙 𝒚 𝒛

Figure 7. An example Axial-Block from Axial-DeepLab [9]. This axial-attention bottleneck block consists of two axial-attention layers
operating along height- and width-axis sequentially.

Conv 3 x 3, stride 2

Conv 3 x 3

Image: 𝐻×𝑊×3

Output: !
"
×#

"
×128

128

Conv 3 x 3
64

64

Max pool 3 x 3
stride 2

128

3

(a) Inception Stem

Conv 1 x 1

Conv 1 x 1

Input: 𝐻×𝑊×𝐶

Output: 𝐻×𝑊×𝐶
𝐶

Conv 3 x 3 𝐶/4

𝐶/4

(b) Bottleneck block

Conv 3x3

Conv 3x3

Input: 𝐻×𝑊×𝐶

Output: 𝐻×𝑊×𝐶

𝐶

𝐶

(c) Wide-Basic block

Conv 1 x 1

Conv 1 x 1

Input: 𝐻×𝑊×𝐶

Output: 𝐻×𝑊×𝐶
𝐶

Conv 3 x 3 𝐶/2

𝐶/4

(d) Wide-Bottle block

Figure 8. Building blocks for our MaX-DeepLab architectures.



Conv

Conv

FC

𝑞! 𝑘! 𝑣! 𝑣" 𝑘" 𝑞"

P2M
Attention

M2P &M2M
Attention

FC

FC

FC

P2P Axial-
Attention

(P) ixel
Path

(M)emory
Path

FFN

𝐻×𝑊×𝐶!"#$% 𝑁×𝐶&$&'()

𝐻×𝑊×𝐶!"#$% 𝑁×𝐶&$&'()

C

C
C/2 C/2 C/2C/2

C

2048

C

C

C

(a) Dual-Path Transformer Block

𝐻×𝑊

1/4
256

𝐷×
𝐻
4
×
𝑊
4

FC
 5

12
 F

C

𝑁Masks: 𝑁 Classes:
𝑁×𝐶

Dog Chair · · ·

3x Dual-Path (Wide-Bottle)
Transformer Block (512)

𝑁×𝐷

3x Wide-Basic

6x Wide-Basic

Pixel
Path

Memory
Path

Memory

1/8
512

1/4
256

𝑁×
𝐻
4
×
𝑊
4

· · ·

1/8
512

FC 512 FC

3x Dual-Path (Wide-Bottle)
Transformer Block (512)

3x Wide-Basic

1/16
2048

1/16
2048

3x Wide-Basic

Sep 5x5 256 Conv 1x1

𝑁×512

𝑁×512

𝑁×512

𝑁×512

3x Wide-Basic 1/2
128

Conv 3x3 Stem 1/2
64

3x Dual-Path (Wide-Bottle)
Transformer Block (256)

1/16
1024 𝑁×512

Pretrain

(b) MaX-DeepLab-Ablation

𝐻×𝑊

1/4
256

𝐷×
𝐻
4
×
𝑊
4

FC
 2

56
 F

C

𝑁Masks: 𝑁 Classes:
𝑁×𝐶

Dog Chair · · ·

3x Dual-Path (Axial)
Transformer Block (256)

𝑁×𝐷

3x BottleNeck

4x BottleNeck

6x Axial-Block

Pixel
Path

Memory
Path

Memory

1/8
512

1/16
1024

1/4
256

𝑁×
𝐻
4
×
𝑊
4

· · ·

1/8
512

FC 256 FC

1x Dual-Path (Axial)
Transformer Block (256)

1x BottleNeck

1/16
2048

1/16
2048

1x BottleNeck

Sep 5x5 256 Conv 1x1

𝑁×256

𝑁×256

𝑁×256

𝑁×256

Inception Stem 1/4
128

Pretrain

(c) MaX-DeepLab-S

𝐻×𝑊

1/4
256

𝐷×
𝐻
4
×
𝑊
4

FC
 5

12
 F

C

𝑁Masks: 𝑁 Classes:
𝑁×𝐶

Dog Chair · · ·

𝑁×𝐷

3x Wide-Basic

6x Wide-Basic

Pixel
Path

Memory
Path

Memory

1/8
512

1/4
256

𝑁×
𝐻
4 ×

𝑊
4

· · ·

1/8
512

FC 512 FC

3x Dual-Path (Wide-Axial)
Transformer Block (512)

3x Wide-Basic

1/16
2048

3x Wide-Basic

Sep 5x5 256 Conv 1x1

𝑁×512

𝑁×512

𝑁×512

3x Wide-Basic 1/2
128

Conv 3x3 Stem 1/2
64

3x Dual-Path (Wide-Axial)
Transformer Block (256)

3x Dual-Path (Wide-Axial)
Transformer Block (512)

1/16
2048

1/16
1024

1/4
256
1/8
5121x Wide-Basic

1x Wide-Basic

1x Wide-Basic 1/8
512

1x Dual-Path (Wide-Axial)
Transformer Block (512)

1/16
2048

3x Dual-Path (Wide-Axial)
Transformer Block (512)

1/16
2048

1/4
256
1/8
5123x Wide-Basic

3x Wide-Basic

3x Wide-Basic 1/8
512

𝑁×512

𝑁×512

𝑁×512

𝑁×512

Pretrain

(d) MaX-DeepLab-L

Figure 9. More detailed MaX-DeepLab architectures. Pretrain labels where we use a classification head to pretrain our models on Ima-
geNet [5]. (a) A dual-path transformer block with C intermediate bottleneck channels. (b) The baseline architecture for our ablation studies
in Sec. 4.2 of the main paper. (c) MaX-DeepLab-S that matches the number of parameters and M-Adds of DETR-R101-Panoptic [1].
Axial-Block (Fig. 7) is an axial-attention bottleneck block borrowed from Axial-DeepLab-L [9]. (d) MaX-DeepLab-L that achieves the
state-of-the-art performance on COCO [6]. Wide-Axial is a wide version of Axial-Block with doubled intermediate bottleneck channels,
similar to the one used in Axial-DeepLab-XL [9]. (The residual connections are dropped for neatness).


