
A. A Systematic Analysis of CL Methods
In this section, we present the results of our preliminary

analysis to evaluate representative continual learning (CL)
strategies in semi-supervised continual learning (SSCL). As
shown in Fig. 7, for all the four semi-supervised classi-
fiers, sequential training (ST) on the incremental partially
labeled data significantly underperforms joint training (JT)
of all the data ever seen, suggesting the existence of catas-
trophic forgetting. Also, implementation of weight regular-
ization methods on a semi-supervised classifier cannot ad-
dress this issue in SSCL. While, using a supervised mem-
ory buffer (SMB) to replay old labeled data can effectively
alleviate catastrophic forgetting, but still remains a perfor-
mance gap to JT, which is caused by the catastrophic for-
getting of unlabeled data. However, an additional unsu-
pervised memory buffer (UMB) cannot effectively exploit
the incremental unlabeled data to improve SSCL. We ex-
tensively evaluate the UMB of various sizes in Fig. 8. Even
the large UMB with 10000 images (the size is twice of a
typical generator used in ORDisCo) cannot further improve
the performance from mitigating the catastrophic forget-
ting of unlabeled data, while a smaller UMB with 500 or
1000 images results in severe overfitting and thus interferes
SSCL. Therefore, a common issue of existing CL strategies
is the lack of ability to continually exploit unlabeled data in
SSCL.

Figure 7. Baselines that combine SSL classifiers and representa-
tive CL methods to address SSCL. JT: Joint training of all the
training samples ever seen. ST: Sequential training on the incre-
mental data; SMB: ST with a supervised memory buffer to replay
the labeled data ever seen.

From the empirical analysis, we observe that using SMB
can effectively alleviate catastrophic forgetting in SSCL.
Classical memory replay methods for supervised CL [32, 4]
use a mean-of-feature strategy to select samples, where the
images that are closest to the feature mean of a class are
stored in the memory buffer. A commonly-used size of the
memory buffer is 20 samples per class, i.e. 200 samples
for 10 classes. While, compared with supervised CL, the

Figure 8. Performance of the baselines that combine SMB with an
additional unsupervised buffer (UMB) of various sizes.

labeled data are generally insufficient in SSCL to perform
selection, e.g., SVHN-1 only provides 300 labeled data in
total. Here we adapt the mean-of-feature strategy to select
samples from small amounts of labeled data (SMB-mof)
in SVHN-3, and compare it with replay of all the labeled
data ever seen (SMB), which is similar to unified sampling
and is indeed competitive to existing selection methods as
analyzed in [5]. We use a fixed size of 200 samples for
SMB-mof, so SMB-mof is equal to SMB in the early 6
batches (180 labeled data in total) and then perform selec-
tion. The better performance of SMB than SMB-mof, par-
ticularly when more labeled data are introduced in the later
batches, indicates that selecting representative labeled data
via mean-of-feature still suffers from the catastrophic for-
getting of labeled data. Since our motivation is to improve
continual learning of unlabeled data in SSCL, we replay all
the labeled data ever seen in SMB. A potential future work
can be designing proper strategy to effectively select labeled
data for memory buffer in SSCL.

Table 6. Comparison of unified sampling (SMB) and mean-of-
feature (SMB-mof) to select the supervised memory buffer.

Batch 15 Batch 20 Batch 25 Batch 30

MT SMB 79.93 86.40 87.57 88.55
SMB-mof 79.95 83.76 84.40 85.03

VAT SMB 87.14 88.55 90.02 90.44
SMB-mof 86.33 87.20 87.10 88.65

PI SMB 77.20 86.20 87.30 88.32
SMB-mof 78.41 83.62 80.87 85.67

PL SMB 86.54 87.88 88.79 89.88
SMB-mof 82.24 86.26 85.48 86.72

To visualize the data coverage of UMB and ORDisCo on
the training data distribution in Fig. 2, we jointly train a fea-
ture embedding layer on SVHN and apply t-SNE projection
to visualize the feature embedding of the unlabeled data in



Table 7. Implementations of SSL classifiers on SVHN dataset with
1000 labels. We present the averaged accuracy (%) on the test set
of SVHN. We follow similar implementations as [27] and achieve
a comparable performance as the published performance. The
slight variance of performance might be caused by different ran-
dom seeds.

Our Implementation Published Performance [27]
MT 93.21 94.35
VAT 94.22 94.37
PI 92.89 92.81
PL 93.19 92.38

UMB, the generated data sampled from ORDisCo and all
the training data. The size of the UMB is around 10% of all
the training data, which is comparable to the storage cost
of a typical generator used in ORDisCo. However, the cov-
erage of the generated data is substantially better than the
UMB with a similar size.

B. Implementation of SSL Classifiers and CL
Methods

For all the semi-supervised classifiers, we jointly train
200,000 iterations with the same semi-supervised split as
[27]. To validate our implementations, in Table 7 we sum-
marize the performance of our implementations and the
published performance [27] on SVHN with 1000 labels.

Implementation details of SSL classifiers and CL meth-
ods are as follows: For sequential training, we search the
number of training epochs among 100, 200, 500 and 1000.
500 training epochs within each batch gives the best aver-
age results on the four SSL methods. As for regularization-
based SSCL extension (EWC, SI and MAS), we search the
best lambda among 0.1, 1, 10 and 100 for EWC and SI, and
10�6, 10�4, 10�2 and 1 for MAS, respectively. Since the
suitable number of training epochs may change, we do an
additional grid search in 250, 500 and 750 for all the three
CL methods and choose the number of epochs that achieve
the best performance. The results of lambda search are sum-
marized in Table 8. We demonstrate the best accuracy of
each trial.

C. SSCL of New Instance on SVHN-3 and
CIFAR10-13

The performance of SSCL of new instance on SVHN-
3 and CIFAR10-13 is summarized in Fig. 9, with ablation
study in Table 9. ORDisCo achieves a much better perfor-
mance than other baselines, particularly on fewer incremen-
tal batches of partially labeled data. The improved perfor-
mance on smaller amounts of data indicates that ORDisCo
can quickly learn a usable model from incremental data,
without waiting for more data to be collected. The ablation
study also shows that the online semi-supervised generative

Table 8. Hyperparameter search of weight regularization methods
in SSL classifiers to address SSCL on SVHN-3. We present the
best accuracy (%) during incremental learning of 30 partially la-
beled batches.

lambda MT PI PL VAT

EWC

0.1 21.23 29.61 16.84 66.97
1 45.76 28.15 33.50 61.51
10 23.54 28.25 18.56 78.96
100 35.80 28.45 18.28 29.61

SI

0.1 40.36 35.45 60.28 20.38
1 32.22 27.56 47.64 65.13
10 30.04 31.36 45.92 40.65
100 16.21 27.37 64.64 19.54

MAS

10�6 36.95 32.90 49.58 33.70
10�4 23.52 21.41 20.20 15.87
10�2 20.46 17.78 15.84 13.51

1 12.66 12.15 11.47 11.75

replay substantially improves SSCL, while the regulariza-
tion of discrimination consistency is more effective when
the partially labeled data are limited, i.e. fewer incremental
batches (Table 9) and labels (Table 3).

Figure 9. Averaged accuracy (%) of classification on CIFAR10.
UMB: An unsupervised memory buffer of a similar size as our
generator; UC: Using the unified classifier to exploit UMB.

Next, we consider to use a much larger UMB. The orig-



Table 9. Ablation study on SVHN-3 and CIFAR10-13. The on-
line semi-supervised generative replay (Replay) substantially im-
proves SSCL, while the regularization of discrimination consis-
tency (Reg) is more effective on fewer incremental batches (15
Batch).

SVHN-3 CIFAR10-13
Method 15 Batch 30 Batch 15 Batch 30 Batch
SMB 76.16 88.60 64.23 74.22

ORDisCo (+Replay, -Reg) 85.44 89.03 71.70 78.59
ORDisCo (+Replay, +Reg) 87.44 90.75 74.45 77.56

inal size of UMB (around 5000 images) is comparable to
the one of a typical generator used in ORDisCo. While,
the larger UMB (around 20000 images) is 4 times larger
than the original one and also much larger than all the
memory cost of both the generator and the discriminator
to train ORDisCo. As shown in Table 10, to much en-
large the UMB with or without the unified classifier (UC)
[8] can only slightly improve SSCL but substantially under-
performs ORDisCo.

Table 10. SMB with larger UMB. To use a larger UMB (4⇥UMB)
with or without the unified classifier (UC) only slightly improves
SSCL of new instance, but significantly underperforms ORDisCo.

SVHN-1 CIFAR10-5
Method 15 Batch 30 Batch 15 Batch 30 Batch
SMB 38.08 73.32 59.61 67.18

SMB+UMB 30.26 59.06 52.90 61.88
SMB+UMB+UC 33.99 65.23 53.61 61.03
SMB+4⇥UMB 30.74 62.96 57.94 65.45

SMB+4⇥UMB+UC 31.50 66.93 58.45 66.26
ORDisCo 55.07 85.52 66.58 73.13

SVHN-3 CIFAR10-13
Method 15 Batch 30 Batch 15 Batch 30 Batch
SMB 76.16 88.60 64.23 74.22

SMB+UMB 77.14 89.54 68.89 75.06
SMB+UMB+UC 83.11 89.36 67.26 74.12
SMB+4⇥UMB 79.72 90.20 69.42 75.96

SMB+4⇥UMB+UC 80.55 89.05 69.03 75.56
ORDisCo 87.44 90.75 71.35 77.56

D. Conditional Samples
Here we show the conditional samples of ORDisCo

learned from incremental partially labeled data in Fig. 10.

E. Complexity Analysis of Generative Replay
We propose an online semi-supervised generative replay

strategy in ORDisCo, which is a time- and storage-efficient
way to exploit the incremental data. We provide a complex-
ity analysis in Table 1 and Fig. 11, of two commonly-used
strategies that sample and replay generated data in an of-
fline manner, and our online strategy. Generative replay ap-
plies generative models to continually recover the learned

(a) SVHN-3

(b) CIFAR10-13

Figure 10. Conditional generation in SSCL. We show the con-
ditional samples of ORDisCo after incremental learning of 10
batches on SVHN-3 (a) and CIFAR10-13 (b).

data distribution to overcome catastrophic forgetting. Many
existing work replay generated data in an offline manner,
which can be conceptually separated as two strategies: (1)
All the generators learned on each task or batch are saved,
and replay conditional samples to a classifier for inference
[28]; and (2) After training on each task or batch, the gen-
erator is saved to replay conditional samples with the next
task or batch to learn a new generator. Then the saved gen-
erator is updated by the new one [35, 43].

As shown in Fig. 11, Strategy 1 has to store the learned
data distribution of each task or batch as a dedicated gen-
erator and replays them from each generator for inference.
Thus, for SSCL of B incremental batches, the storage and
time complexities of Strategy 1 are O(B) and O(B), re-
spective. Strategy 2 continually updates one generator af-
ter learning each task or batch. While, to overcome catas-
trophic forgetting in the generative model, Strategy 2 has to
sample sufficient generated data from the old generator af-
ter learning each task for replay, even though the inference
for classification is not required at that time. So the storage
and time complexities of Strategy 2 are O(1) and O(B2). If
inference is required after learning each task or batch, the



Figure 11. Storage and time complexity analysis of two offline
strategies and our online strategy. We use 3 batches as an example
to illustrate the storage and time complexity of the three strate-
gies. The blue, green, and purple lines represent the storage and
time costs of the first, the second and the third batch, respectively.
While the black line represents the model is continually updated.

Figure 12. Selecting SMB of a fixed size through the mean-of-
feature approach. SMB: A supervised memory buffer of a fixed
size, selected by the mean-of-feature approach; UMB: An unsu-
pervised memory buffer of a similar size as our generator; UC:
Using the unified classifier to exploit UMB.

time complexity of Strategy 1 will be the same as Strat-
egy 2, i.e. O(B2). In contrast, the online replay strategy
in ORDisCo continually updates one generator and replays
a constant amount of generated data during training, where

the storage and time complexities are O(1) and O(B). Note
that although our online replay strategy has the same stor-
age complexity as Strategy 2, the extra generator used in
Strategy 2 results in more storage costs than ours.

F. Selecting SMB of a Fixed Size
Here we consider selecting SMB of a fixed size through

a widely-used mean-of-feature approach [32, 4, 5] for OR-
DisCo and all the baselines. We keep SMB of the size 200
images, i.e. 20 images per class. As shown in Fig. 12, the
smaller and fixed SMB results in more severe overfitting
in SSCL, while ORDisCo substantially outperforms other
baselines due to more effectively exploiting the incremental
unlabeled data.

G. Hyperparameters of ORDisCo
↵ and � are the two hyperparameters used in ORDisCo.

Following [15], we keep ↵ = 0.5 to balance the discrimina-
tor predictions of fake data-label pairs from generator and
classifier. While, � is the hyperparameter to address catas-
trophic forgetting of unlabeled data in SSCL. We make a
grid search of � among 0.1, 0.01 and 0.001 based on train-
ing error, and keep � = 0.001.


