A. Additional Network and Training Details

Here, we present the architecture of our neural talking-
head model. We also discuss the training details.

A.1. Network architectures

The implementation details of the networks in our model
are shown in Fig. 1 and described below.

Appearance feature extractor F'. The network extracts 3D
appearance features from the source image. It consists of a
number of downsampling blocks, followed by a convolution
layer that projects the input 2D features to 3D features. We
then apply a number of 3D residual blocks to compute the
final 3D features f,.

Canonical keypoint detector L. The network takes the
source image and applies a U-Net style encoder-decoder to
extract canonical keypoints. Since we need to extract 3D
keypoints, we project the encoded features to 3D through a
1 x 1 convolution. The output of the 1 x 1 convolution is
the bottleneck of the U-Net. The decoder part of the U-Net
consists of 3D convolution and upsampling layers.

Head pose estimator H and expression deformation es-
timator A. We adopt the same architecture as in Ruiz et
al. [10]. It consists of a series of ResNet bottleneck blocks,
followed by a global pooling to remove the spatial dimen-
sion. Different linear layers are then used to estimate the
rotation angles, the translation vector, and the expression
deformations. The full angle range is divided into 66 bins
for rotation angles, and the network predicts which bin the
target angle is in. The estimated head pose and deformations
are used to transform the canonical keypoints to obtain the
source or driving keypoints.

Motion field estimator M. After the keypoints are pre-
dicted, they are used to estimate warping flow maps. We
generate a warping flow map wy, based on the k-th keypoint
using the first-order approximation [11]. Let pg be a 3D
coordinate in the feature volume of the driving image d. The
k-th flow field maps p, to a 3D coordinate in the 3D feature
volume of the source image s, denoted by p;, by:
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This builds a correspondence between the source and driving.

Using the flow field wy, obtained from the k-th keypoint
pair, we can warp the source feature f, to construct a candi-
date warped volume, wy(fs). After we obtain the warped
source features wy(fs) using all K flows, they are con-
catenated together and fed to a 3D U-Net to extract fea-
tures. Then a softmax function is employed to obtain the
flow composition mask m, which consists of K 3D masks,
{mq,ma,...,mg}. These maps satisfy the constraints that
dmi(pa) = 1and 0 < my(pg) < 1 for all pg. These
K masks are then linearly combined with the K warping

flow maps, wg’s, to construct the final warping map w by
2211 my(pa)wk (pq). To handle occlusions caused by the
warping, we also predict a 2D occlusion mask o, which will
be inputted to the generator G.

Generator GG. The generator takes the warped 3D appear-
ance features w( fs) and projects them back to 2D. Then, the
features are multiplied with the occlusion mask o obtained
from the motion field estimator M. Finally, we apply a series
of 2D residual blocks and upsamplings layers to obtain the
final image.

A.2. Losses

We present details of the loss terms in the following.

Perceptual loss £p. We use the multi-scale implementa-
tion introduced by Siarohin er al. [11]. In particular, a
pre-trained VGG network is used to extract features from
both the ground truth and the output image, and the L; dis-
tance between the features is computed. Then both images
are downsampled, and the same VGG network is used to
extract features and compute the L distance again. This
process is repeated 3 times to compute losses at multiple
image resolutions. We use layers relu_1_.1, relu.2.1,
relu_.3.1, relu.4.1l, relu.5.1 of the VGGI19 net-
work with weights 0.03125,0.0625, 0.125,0.25, 1.0, respec-
tively. Moreover, since we are synthesizing face images,
we also compute a single-scale perceptual loss using a
pre-trained face VGG network [9]. These losses are then
summed together to give the final perceptual loss.

GAN loss L. We adopt the same patch GAN implemen-
tation as in [8, 14], and use the hinge loss. Feature match-
ing [14] loss is also adopted to stabilize training. We use
single-scale discriminators for training 256 x 256 images,
and two-scale discriminators [ 4] for 512 x 512 images.

Equivariance loss £ . This loss ensures the consistency of
estimated keypoints [1 1, 15]. In particular, let the original
image be d and its detected keypoints be x4. When a known
spatial transformation T is applied on image d, the detected
keypoints 24y on this transformed image T (d) should be
transformed in the same way. Based on this observation,
we minimize the Ly distance [xq — T~ (zp(q))|1. Affine
transformations and randomly sampled thin plate splines
are used to perform the transformation. Since all these are
2D transformations, we project our 3D keypoints to 2D by
simply dropping the z values before computing the losses.

Keypoint prior loss £;. As described in the main paper,
we penalize the keypoints if the distance between any pair
of them is below some threshold Dy, or if the mean depth
value deviates from a preset target value z;. In other words,
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Figure 1: Architectures of individual components in our model. For the building blocks, please refer to Fig. 2
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Figure 2: Building blocks of our model. For the 3D counter-
parts, we simply replace 2D convolutions with 3D convolu-
tions in the blocks.

where Z(-) extracts the mean depth value of the keypoints.
This ensures the keypoints are more spread out and used
more effectively. We set D; to 0.1 and z; to 0.33 in our
experiments.

Head pose loss L. We compute the L; distance between
the estimated head pose R4 and the one predicted by a pre-
trained pose estimator R4, which we treat as ground truth.
In other words, Ly = |R4 — Ral|1, where the distance is
computed as the sum of differences of the Euler angles.

Deformation prior loss £4. Since the expression deforma-
tion A is the deviation from the canonical keypoints, their
magnitude should not be too large. To ensure this, we put a
loss on their £1 norm: LA = [da,x

I1-

Final loss The final loss is given by:

L =XpLp(d,y) + AcLc(d,y) + AeLe({zar})+

MLr({zar}) + AuLu(Ra, Ra) + AaLa({0ak})
3)

where \’s are the weights and are set to 10, 1, 20, 10,20, 5
respectively in our implementation.

A.3. Optimization

We adopt the ADAM optimizer [4] with §; = 0.5 and
B2 = 0.999. The learning rate is set to 0.0002. We apply
Spectral Norm [7] to all the layers in both the generator and
the discriminator. We use synchronized BatchNorm for the
generator. Training is conducted on an NVIDIA DGX1 with
8 32GB V100 GPUs.

We adopt a coarse-to-fine approach for training. We first
train our model on 256 x 256 images for 100 epochs. We
then finetune on 512 x 512 images for another 10 epochs.

B. Additional Experiment Details
B.1. Datasets

We use the following datasets in our evaluations.

VoxCeleb2 [1]. The dataset contains about 1M talking-head
videos of different celebrities. We follow the training and
test split proposed in the original paper. where we use 280K
videos with high bit-rates to train our model. We report
our results on the validation set, which contains about 36k
videos.

TalkingHead-1KH. We compose a dataset containing about
1000 hours of videos from various sources. A large por-
tion of them is from the YouTube website with the creative
common license. We also use videos from the Ryerson
audio-visual dataset [6] as well as a set of videos that we
recorded with the permission from the subject ourselves. We
only use videos whose resolution and bit-rate are both high.
We call this dataset TalkingHead-1KH. The videos in the
TalkingHead-1KH are in general with higher resolutions and
better image quality than those in the VoxCeleb2.

B.2. Metrics

We use a set of metrics to evaluate a talking-head synthe-
sis method. We use L, PSNR, SSIM, and MS-SSIM for



Table 1: Cross-identity transfer using relative motion.

VoxCeleb2 TalkingHead-1KH
Method FID| CSIM? FID| CSIM?

fs-vid2vid [13]  48.48  0.928  44.83 0.955
FOMM [I1] 4891 0.954 4226 0.961
Ours 4643 0960 41.25 0.964

quantifying the faithfulness of the recreated videos. We use
FID to measure how close is the distribution of the recre-
ated videos to that of the original videos. We use AKD to
measure how close the facial landmarks extracted by an off-
the-shelf landmark detector from the recreated video are to
those in the original video. In the following, we discuss the
implementation details of these metrics.

L. We compute the average L1 distance between generated
and real images.

PSNR measures the image reconstruction quality by com-
puting the mean squared error (MSE) between the ground
truth and the reconstructed image.

SSIM/MS-SSIM. SSIM measures the structural similarity
between patches of the input images. Therefore, it is more
robust to global illumination changes than PSNR, which is
based absolute errors. MS-SSIM is a multi-scale variant of
SSIM that works on multiple scales of the images and has
been shown to correlate better with human perception.

FID [2] measures the distance between the distributions
of synthesized and real images. We use the pre-trained
InceptionV3 network to extract features from both sets of
images and estimate the distance between them.

Average keypoint distance (AKD). We use a facial land-
mark detector [3] to detect landmarks of real and synthesized
images and then compute the average distance between the
corresponding landmarks in these two images.

B.3. Relative motion transfer

For cross-identity motion transfer results in our experi-
ment section, we transfer absolute motions in the driving
video. For completeness, we also report quantitative com-
parisons using relative motion proposed in [ 1] in Table 1.
As can be seen, our method still performs the best.

B.4. Ablation study

We perform the following ablation studies to verify the
effectiveness of our several important design choices.

Two-step vs. direct keypoint prediction. We estimate the
keypoints in an image by first predicting the canonical key-
points and then applying the transformation and the defor-
mations. To compare this approach with direct keypoint
location prediction, we train another network that directly
predicts the final source and driving keypoints in the image.
In particular, the keypoint detector L directly predicts the

Table 2: Ablation study. Compared with all the other alter-
natives, our model (the preferred setting) works the best.

Method L1 PSNR SSIM MS-SSIM FID AKD
Direct pred. 10.84 24.00 0.80 0.83 58.55 4.26
Ours (20 kp) 10.67 24.20 0.81 0.84 52.08 3.74

2D Warp 11.64 23.38 0.79 0.82 58.75 4.20
Ours (20 kp) 10.67 24.20 0.81 0.84 52.08 3.74

10kp 11.49 2336 0.79 0.82 56.27 4.31
15kp 11.35 2353 0.79 0.82 5436 4.50
Ours (20 kp) 10.67 24.20 0.81 0.84 52.08 3.74

Driving fre
Figure 3: Example failure cases. Our method still struggles
when there are occluders such as hands in the image.

Synthesized result

Source image

final source and driving keypoints in the image instead of
the canonical ones, and there is no pose estimator H and
deformation estimator A. Since there is no pose estimator,
we do not need any pose supervision (i.e., head pose loss)
for this direct prediction network. Note that while this model
is only slightly inferior to our final (two-step) model quanti-
tatively, it has no pose control for the output video since the
head pose is no longer estimated, so a major feature of our
method would be lost.

3D vs. 2D warping. We generate 3D flow fields from the
estimated keypoints to warp 3D features. Another option is
to project the keypoints to 2D, estimate a 2D flow field, and
extract 2D features from the source image. The estimated
2D flow filed is then used to warp 2D image features.

Number of keypoints. We show that our approach’s output

quality is positively correlated with the number of keypoints.
As can be seen in Table 2, our model works better than

all the other alternatives on all of the performance metrics.

B.5. Failure cases

While our model is in general robust to different situa-
tions, it cannot handle large occlusions well. For example,
when the face is occluded by the person’s hands or other ob-
jects, the synthesis quality will degrade, as shown in Fig. 3



Table 3: Size of per-frame metadata in bytes for talking-head
methods before and after arithmetic compression.

Before
Compression Mean Min Max

After Compression

Method Median

fs-vid2vid [13] 504 23142 158 599 238
FOMM [11] 240 171.09 159 210 169
Ours (20 kp) 132 84.44 78 104 84

Ours (adaptive) 81.16 53.03 25 102 45

B.6. Canonical keypoints for face recognition

Our canonical keypoints are formulated to be independent
of the pose and expression change. They should only contain
a person’s geometry signature, such as the shapes of face,
nose, and eyes. To verify this, we conduct an experiment
using the canonical keypoints for face recognition.

We extract canonical keypoints from 384 identities in
the VoxCeleb2 [1] dataset to form a training set. For each
identity, we also pick a different video of the same identity
to form the test set. The training and test videos of the same
subject have different head poses and expressions. A face
recognition algorithm would fail if it could not filter out
pose and expression information. To prove our canonical
keypoints are independent to poses and expressions, we
apply a simple nearest neighbor classifier using our canonical
keypoints for the face recognition task.

Overall, our canonical keypoints reaches an accuracy of
0.070, while a random guess has an accuracy of 0.0026
(Ouwurs is 27x better than the random guess.). On the other
hand, a classifier using the off-the-shelf dlib landmark de-
tector only achieves an accuracy of 0.013, which means our
keypoints are 5x more effective for face recognition.

C. Additional Video Conferencing Details
C.1. Entropy encoder

We represent each rotation angle, translation, and defor-
mation value as an fp16 floating-point number. Each number
consumes two bytes. Naively transmitting the 3K + 6 float-
ing numbers will result in transmitting 6K + 12 bytes. We
adopt arithmetic coding [5] to encode the 3K + 6 numbers.
Arithmetic coding is one kind of entropy coding. It assigns
different codeword lengths to different symbols based on
their frequencies. The symbol that appears more often will
have a shorter code.

We first apply the driving image encoder to a validation
set of 127 videos that are not included in the test set. Each
frame will give us 6 K + 12 bytes. We treat each of the bytes
separately and build a frequency table for each byte. This
gives us 6K + 12 frequency tables. When encoding the test
set, we encode each byte using the associated frequency table
learned from the validation set. This results in a varying-

length representation that is much smaller than 6K + 12
bytes on average.

Table 3 shows the sizes of the per-frame metadata in bytes
that needs to be transmitted for various talking-head methods
before and after performing the arithmetic compression for
an image size of 512x512. Our adaptive scheme requires a
per-frame metadata size of 53.03 B, which corresponds to
(53.03 x 8/5122) = 0.001618 bits per pixel.

C.2. Adaptive number of keypoints

Our basic model uses a fixed number of keypoints dur-
ing training and inference. However, on a video call, it is
advantageous to adaptively change the number of keypoints
used to accommodate varying bandwidth and internet con-
nectivity. We devise a scheme where our synthesis model
can dynamically use a smaller number of keypoints for re-
construction. This is based on the intuition that not all of
the images are of the same complexity. Some just require
fewer keypoints. Using fewer keypoints, we can reduce the
bandwidth required for video conferencing because we just
need to send a subset of d4;’s. To train a model that sup-
ports a varying number of keypoints, we randomly choose
an index into the array of ordered keypoints, and dropout all
values from that index till the end of the array. This dropout
percentage ranges from 0% to 75%. This scheme is also
helpful when the available bandwidth suddenly drops.

C.3. Binary encoding of the residuals

When the contents of the video being streamed change
drastically, e.g. when new objects are introduced into the
video or the person changes, it becomes necessary to update
the source frame being used to perform the talking-head
synthesis. This can be done by sending a new image to
the receiver. We also devise a more efficient scheme to
encode and send only the residual between the ground truth
frame and the reconstructed frame, instead of an entirely new
source image. To encode a residual image of size 512 x 512,
we use a 3-layer network with convolutions of kernel size 3,
stride 2, and 32 channels, similar to the network proposed
by Tsai et al. [12]. We compute the sign of the latent code
of size 32 x 64 x 64 to obtain binary latent codes. The
decoder also consists of 3 convolutional layers of 128 filters
and uses the pixel shuffle layer to perform upsampling. After
arithmetic coding, the binary latent code requires 13.40 KB
on average. Note that we do not need to send the encoded
binary residual every frame. We just need to send it when the
current source image is not good enough to reconstruct the
current driving image. In the receiver side, we will use the
encoded residual to improve the quality of the reconstructed
image. The reconstructed image will become the new source
image for decoding future frames using the encoded rotation,
translation, and deformations. Example improvements after
adding the residual are shown in Fig. 4.
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Figure 4: Fixing artifacts in compressed images using our binary residual encoder. We are able to fix artifacts caused due to
the introduction of new objects, changes in background, as well as extreme poses by transmitting the residuals encoded as
binary values. Each residual binary latent code requires only about 13.40 KB and can replace sending new source images.
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Figure 5: Automatic and human evaluations for video compression. Ours requires much lower bandwidth than the H.264 and
H.265 codecs and other talking-head synthesis methods thanks to our keypoint decomposition and adaptive scheme.

C.4. Dataset

For testing, we collect a set of high-resolution talking-
head videos from the web. We ensure that the head is of size
at least 512x512 pixels and manually check each video to
ensure its quality. This results in a total of 222 videos, with
a mean of 608 frames, a median of 661 frames, and a min
and max of 20 and 1024 frames, respectively.

C.5. Additional experiment results

In Fig. 5(a), we show the achieved LPIPS score by our ap-
proach under the adaptive setting (red circle), our approach
under the 20 keypoint setting (red triangle), FOMM (green
square), fs-vid2vid (orange diamond), H.264, and H.265 us-
ing different bpp rates. We observe that our method requires
much lower bandwidth than the competing methods.

User study. Here, we describe the details of our user study.
We use the Amazon Mechanical Turk (MTurk) platform for

the user preference score. A worker needs to have a lift-
time approval rate greater than 98 to be qualified for our
study. This means that the requesters approve 98% of his/her
task assignments. For comparing two competing methods,
we generate 222 videos from each method. We show the
corresponding pair of videos from two competing methods
to three different MTurk workers and ask them to select
which one has better visual quality. This gives 666 pref-
erence scores for each comparison. We report the average
preference score achieved by our method. We compare our
adaptive approach to both H.264 and H.265. The user pref-
erence scores of our approach when compared to H.264 and
H.265 are shown in Fig. 5(b) and (c), respectively. We found
that our approach renders comparable performance to H.264
with CRF value 36. For H.265, our approach is comparable
to CRF value 37. Our approach was able to achieve the same
visual quality using a much lower bit-rate.
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