
PatchmatchNet: Learned Multi-View Patchmatch Stereo
Supplementary Material

Fangjinhua Wang1 Silvano Galliani2 Christoph Vogel2 Pablo Speciale2 Marc Pollefeys1,2
1Department of Computer Science, ETH Zurich

2Microsoft Mixed Reality & AI Zurich Lab

1. Why not use 3D cost volume regularization?

The adaptive evaluation of our learning-based Patch-
match utilizes 3D convolution layers with 1 × 1× 1 ker-
nels for the matching cost computation as well as the pixel-
wise view weight estimation. This is in contrast to com-
mon previous works [3, 6, 10, 14, 15, 16, 17] where a 3D U-
Net regularizes the cost volume. Similarly, arguing that the
distribution of cost volume itself being not discriminative
enough [4, 12], PVSNet [15] also applies a 3D U-Net for
predicting the visibility per source view.

The problem with such regularization framework is that
it requires a regular spatial structure in the volume. Al-
though we concatenate the matching costs per pixel and
depth hypothesis into a volume-like shape as other works [3,
6,10,14,15,16,17], we do not possess such a regular struc-
ture: (i) the depth hypotheses for each pixel and its spatial
neighbors are different, which makes it difficult to aggre-
gate cost information in the spatial domain; (ii) the depth
hypotheses of each pixel are not uniformly distributed in the
inverse depth range as CIDER [14], which makes it difficult
to aggregate cost information along depth dimension.

Recall that during the computation of the pixel-wise
view weights in the initial iteration of Patchmatch, depth
hypotheses are randomly distributed in the inverse depth
range, i.e. the hypotheses are spatially different per pixel.
In each subsequent iteration (on stage k), we perform local
perturbation by generating per pixel Nk depth hypotheses
uniformly in the normalized inverse depth range Rk, which
is centered at the previous estimate. Consequently, the hy-
potheses of spatial neighbors can differ significantly, espe-
cially at depth discontinuities and thin structures. Including
the hypotheses obtained by adaptive propagation, that are,
moreover, not uniform in the inverse depth range, will in-
crease these effects further.

In the end, however, the main reason for our approach to
avoid 3D cost volume regularization altogether is efficiency.
In a coarse-to-fine framework, running such regularization
frameworks over multiple iterations of Patchmatch on each
stage would increase memory consumption and run-time

Figure 1: Illustration of local perturbation in the (normal-
ized) inverse depth range. The blue and orange lines repre-
sent previous estimation and new hypotheses respectively.

significantly and mitigate our main contribution of building
a high-performance, but particularly lightweight framework
that can operate with a high computation speed.

2. How to set the normalized inverse depth
range Rk in the local perturbation step of
Patchmatch?

After the initial iteration, our set of hypothesis is ob-
tained by adaptive propagation and by local perturbation of
the previous estimation. Recall that our local perturbation
procedure enriches the set of hypothesis by generating per
pixel Nk depth hypotheses uniformly in the normalized in-
verse depth range Rk, which is illustrated in Fig. 1.

The objective is two-fold. Especially at the beginning,
at low resolution, this helps to further explore the search
space. More importantly, our adaptive propagation implic-
itly assumes front-to-parallel surfaces, since we do not ex-
plicitly include tangential surface information (due to an
implied heavy memory consumption) like [2, 5, 13]. Sam-
pling in the local vicinity of the previous estimation will
refine the solution locally and mitigate potential disadvan-
tages from not explicitly modeling tangential surface infor-
mation. We find it helpful to apply these perturbations al-
ready at an early stage to inject the positive effects into hy-
pothesis propagation and note that a-posteriori refinement
at the finest level alone cannot recover the same quality. In
practice, we again operate in coarse-to-fine manner and set
Rk accordingly, based on the hierarchy level.

Fig.2 shows the cumulative distribution function of the
normalized absolute error in the inverse depth range on
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Figure 2: Cumulative distribution function of normalized
absolute errors in the inverse depth range on DTU’s evalua-
tion set [1]. ‘Stage k, nth iter’ denotes the result of the nth

iteration of Patchmatch on stage k.

DTU’s evaluation set [1]. After the first iteration of Patch-
match on stage 3, the estimation error decreases remark-
ably: the normalized error is already smaller than 0.1 for
90.0% percent of the cases. Visibly, the performance keeps
improving after each iteration. To correct errors in estima-
tion and refine the results on stage k, we set Rk to com-
pensate most of estimation errors. For example, we set
R3 = 0.38 for Patchmatch on stage 3 after first iteration so
that we can cover most ground truth depth in the hypothesis
range and then refine the results. Besides, adaptive propa-
gation will further correct those wrong estimations with the
depth hypotheses from neighbors when sampling in Rk fails
in refinement (c.f . Fig. 6 from the paper).

3. Why not include propagation for last itera-
tion of Patchmatch on stage 1?

Similar to MVSNet [17], the point cloud reconstruction
mainly consists of photometric consistency filtering, geo-
metric consistency filtering and depth fusion. Photomet-
ric consistency filtering is used to filter out those depth hy-
potheses that have low confidence. Based on MVSNet [17],
we define the confidence as the probability sum of the depth
hypotheses that fall in a small range near the estimation.
We use the probability P (c.f . Eq. 7 from the paper) from
the last iteration of Patchmatch on stage 1 for filtering. In
this iteration, we only perform local perturbation, without
adaptive propagation. At stage 1, operating at a quarter the
image resolution and with the algorithm almost converged,
the hypotheses obtained via propagation from spatial neigh-
bors are usually very similar to the current solution. Such
irregular sampling of the probability space causes bias in
the regression (c.f . Eq. 7 from the paper) and the estimate
becomes over-confident at the current solution, where most
propagated samples are located. In contrast, by performing
only the local perturbation, the depth hypotheses are uni-
formly distributed in the inverse depth range. Contrary to

previous iterations, we compute the estimated depth at pixel
p, D(p), by utilizing the inverse depth regression [14],
which is based on the soft argmin operation [8]:

D(p) = (

D−1∑
j=0

1

dj
·P(p, j))−1, (1)

where P(p, j) is the probability for pixel p at the j-th depth
hypothesis. Then we compute the probability sum of four
depth hypotheses that are nearest to the estimation to mea-
sure the confidence [17].

4. Weighting in the Adaptive Spatial Cost Ag-
gregation

Recall that in Eq. 6 of the paper we utilize two weights
to aggregate our spatial costs, {wk}Ke

k=1 based on spatial
feature similarity and {dk}Ke

k=1 based on the similarity of
depth hypotheses. The feature weights {wk}Ke

k=1 at a pixel p
are based on the feature similarity at the sampling locations
around p, measured in the reference feature map F0. Given
the sampling positions {p + pk + ∆pk}Ke

k=1, we extract the
corresponding features from F0 via bilinear interpolation.
Then we apply group-wise correlation [7] between the fea-
tures at each sampling location and p. The results are con-
catenated into a volume on which we apply 3D convolution
layers with 1×1×1 kernels and sigmoid non-linearities to
output normalized weights that describe the similarity be-
tween each sampling point and p.

As discussed in Sec. 1, neighboring pixels will be as-
signed different depth values throughout the estimation pro-
cess. For pixel p and the j-th depth hypothesis, our depth
weights {dk}Ke

k=1 take this into account and downweight the
influence of samples with large depth difference, especially
when located across depth discontinuities. To that end,
we collect the absolute difference in inverse depth between
each sampling point and pixel p with their j-th hypotheses,
and obtain the weights by applying a sigmoid function on
the, again, inverted differences for normalization.

5. Evaluation of Multi-stage Depth Estimation

We use multiple stages to estimate the depth map in a
coarse-to-fine manner. Here, we analyze the effectiveness
of our multi-stage framework. We upsample the estimated
depth maps on stages 3, 2 and 1, to the same resolution as
the input and then reconstruct the point clouds. As shown
in Table 1, the reconstruction quality gradually increases
from coarser stages to finer ones. This shows that our multi-
stage framework can reconstruct the scene geometry with
increasing accuracy and completeness.



Stages Acc.(mm) Comp.(mm) Overall(mm)
3 0.740 0.389 0.564
2 0.471 0.283 0.377
1 0.441 0.268 0.354
0 0.427 0.277 0.352

Table 1: Quantitative results of different stages on DTU’s
evaluation set [1] (lower is better). The depth maps on
stages 3, 2 and 1 are upsampled to reach the same resolution
as input images and then used to reconstruct point clouds.

Figure 3: Visualization of sampling locations in adaptive
propagation for two typical situations: object boundary and
textureless region. The center points and sampling points
are shown in red and blue respectively.

6. Visualization of Adaptive Propagation

We visualize the sampling locations in two typical situ-
ations, at an object boundary and a textureless region. As
shown in Fig. 3, for the pixel p at the object boundary, all
sampling points tend to be located on the same surface as p.
In contrast, for the pixel q in the textureless region, the sam-
pling points are spread over a larger region. By sampling
from a large region, a more diverse set of depth hypotheses
can be propagated to q and reduce the local ambiguity for
depth estimation in the textureless area. The visualization
shows two examples how the adaptive propagation success-
fully adapts the sampling to different challenging situations.

7. Visualization of Adaptive Evaluation

Here, we again visualize the sampling locations for two
situations, at an object boundary and a textureless region.
Fig.4 demonstrates that for the pixel p at the object bound-
ary, sampling points tend to stay within the boundaries of
the object, such that they focus on similar depth regions.
For the pixel q in the textureless region, the points are

Figure 4: Visualization of sampling locations in adaptive
evaluation for two typical situations: object boundary and
textureless region. The center points and sampling points
are shown in red and blue respectively.

distributed sparsely to sample from a large context, which
helps to obtain reliable matching and to reduce the ambigu-
ity. Again, the visualization demonstrates how our adaptive
evaluation adapts the sampling for the spatial cost aggrega-
tion to different situations.

8. Visualization of Point Clouds
We visualize reconstructed point clouds from DTU’s

evaluation set [1], Tanks & Temples dataset [9] and ETH3D
benchmark [11] in Fig. 5, 6, 7.



Figure 5: Reconstruction results on DTU’s evaluation set [1].



Figure 6: Reconstruction results on Tanks & Temples dataset [9].



Figure 7: Reconstruction results on ETH3D benchmark [11].
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