1. Why not use 3D cost volume regularization?

The adaptive evaluation of our learning-based Patchmatch utilizes 3D convolution layers with $1 \times 1 \times 1$ kernels for the matching cost computation as well as the pixel-wise view weight estimation. This is in contrast to common previous works \cite{3, 6, 10, 14, 15, 16, 17} where a 3D U-Net regularizes the cost volume. Similarly, arguing that the distribution of cost volume itself being not discriminative enough \cite{4, 12}, PVSNet \cite{15} also applies a 3D U-Net for predicting the visibility per source view.

The problem with such regularization framework is that it requires a regular spatial structure in the volume. Although we concatenate the matching costs per pixel and depth hypothesis into a volume-like shape as other works \cite{3, 6, 10, 14, 15, 16, 17}, we do not possess such a regular structure: (i) the depth hypotheses for each pixel and its spatial neighbors are different, which makes it difficult to aggregate cost information in the spatial domain; (ii) the depth hypotheses of each pixel are not uniformly distributed in the inverse depth range as CIDER \cite{14}, which makes it difficult to aggregate cost information along depth dimension.

Recall that during the computation of the pixel-wise view weights in the initial iteration of Patchmatch, depth hypotheses are randomly distributed in the \emph{inverse} depth range, i.e. the hypotheses are spatially different per pixel. In each subsequent iteration (on stage k), we perform local perturbation by generating per pixel N_k depth hypotheses uniformly in the normalized inverse depth range R_k, which is illustrated in Fig. 1. The objective is two-fold. Especially at the beginning, at low resolution, this helps to further explore the search space. More importantly, our adaptive propagation implicitly assumes front-to-parallel surfaces, since we do not explicitly include tangential surface information (due to an implied heavy memory consumption) like \cite{2, 5, 13}. Sampling in the local vicinity of the previous estimation will refine the solution locally and mitigate potential disadvantages from not explicitly modeling tangential surface information. We find it helpful to apply these perturbations already at an early stage to inject the positive effects into hypothesis propagation and note that a-posteriori refinement at the finest level alone cannot recover the same quality. In practice, we again operate in coarse-to-fine manner and set R_k accordingly, based on the hierarchy level.

2. How to set the normalized inverse depth range R_k in the local perturbation step of Patchmatch?

After the initial iteration, our set of hypothesis is obtained by adaptive propagation and by local perturbation of the previous estimation. Recall that our local perturbation procedure enriches the set of hypothesis by generating per pixel N_k depth hypotheses uniformly in the normalized inverse depth range R_k, which is illustrated in Fig. 1.

The objective is two-fold. Especially at the beginning, at low resolution, this helps to further explore the search space. More importantly, our adaptive propagation implicitly assumes front-to-parallel surfaces, since we do not explicitly include tangential surface information (due to an implied heavy memory consumption) like \cite{2, 5, 13}. Sampling in the local vicinity of the previous estimation will refine the solution locally and mitigate potential disadvantages from not explicitly modeling tangential surface information. We find it helpful to apply these perturbations already at an early stage to inject the positive effects into hypothesis propagation and note that a-posteriori refinement at the finest level alone cannot recover the same quality. In practice, we again operate in coarse-to-fine manner and set R_k accordingly, based on the hierarchy level.

Fig. 2 shows the cumulative distribution function of the normalized absolute error in the inverse depth range on
DTU’s evaluation set [1]. After the first iteration of Patchmatch on stage 3, the estimation error decreases remarkably: the normalized error is already smaller than 0.1 for 90.0% percent of the cases. Visibly, the performance keeps improving after each iteration. To correct errors in estimation and refine the results on stage k, we set R_k to compensate most of estimation errors. For example, we set $R_3 = 0.38$ for Patchmatch on stage 3 after first iteration so that we can cover most ground truth depth in the hypothesis range and then refine the results. Besides, adaptive propagation will further correct those wrong estimations with the depth hypotheses from neighbors when sampling in R_k fails in refinement (c.f. Fig. 6 from the paper).

3. Why not include propagation for last iteration of Patchmatch on stage 1?

Similar to MVSNet [17], the point cloud reconstruction mainly consists of photometric consistency filtering, geometric consistency filtering and depth fusion. Photometric consistency filtering is used to filter out those depth hypotheses that have low confidence. Based on MVSNet [17], we define the confidence as the probability sum of the depth hypotheses that fall in a small range near the estimation. We use the probability P (c.f. Eq. 7 from the paper) from the last iteration of Patchmatch on stage 1 for filtering. In this iteration, we only perform local perturbation, without adaptive propagation. At stage 1, operating at a quarter the image resolution and with the algorithm almost converged, the hypotheses obtained via propagation from spatial neighbors are usually very similar to the current solution. Such irregular sampling of the probability space causes bias in the regression (c.f. Eq. 7 from the paper) and the estimate becomes over-confident at the current solution, where most propagated samples are located. In contrast, by performing only the local perturbation, the depth hypotheses are uniformly distributed in the inverse depth range. Contrary to previous iterations, we compute the estimated depth at pixel p, $D(p)$, by utilizing the inverse depth regression [14], which is based on the soft argmin operation \[8\]:

$$D(p) = \left(\sum_{j=0}^{D-1} \frac{1}{d_j} \cdot P(p, j) \right)^{-1},$$

where $P(p, j)$ is the probability for pixel p at the j-th depth hypothesis. Then we compute the probability sum of four depth hypotheses that are nearest to the estimation to measure the confidence [17].

4. Weighting in the Adaptive Spatial Cost Aggregation

Recall that in Eq. 6 of the paper we utilize two weights to aggregate our spatial costs, $\{w_k\}_{k=1}^{K_x}$ based on spatial feature similarity and $\{d_k\}_{k=1}^{K_x}$ based on the similarity of depth hypotheses. The feature weights $\{w_k\}_{k=1}^{K_x}$ at a pixel p are based on the feature similarity at the sampling locations around p, measured in the reference feature map F_0. Given the sampling positions $\{p + p_k + \Delta p_k\}_{k=1}^{K_x}$, we extract the corresponding features from F_0 via bilinear interpolation. Then we apply group-wise correlation [7] between the features at each sampling location and p. The results are concatenated into a volume on which we apply 3D convolution layers with $1 \times 1 \times 1$ kernels and sigmoid non-linearities to output normalized weights that describe the similarity between each sampling point and p.

As discussed in Sec. 1, neighboring pixels will be assigned different depth values throughout the estimation process. For pixel p and the j-th depth hypothesis, our depth weights $\{d_k\}_{k=1}^{K_x}$ take this into account and downweight the influence of samples with large depth difference, especially when located across depth discontinuities. To that end, we collect the absolute difference in inverse depth between each sampling point and pixel p with their j-th hypotheses, and obtain the weights by applying a sigmoid function on the, again, inverted differences for normalization.

5. Evaluation of Multi-stage Depth Estimation

We use multiple stages to estimate the depth map in a coarse-to-fine manner. Here, we analyze the effectiveness of our multi-stage framework. We upsample the estimated depth maps on stages 3, 2 and 1, to the same resolution as the input and then reconstruct the point clouds. As shown in Table 1, the reconstruction quality gradually increases from coarser stages to finer ones. This shows that our multi-stage framework can reconstruct the scene geometry with increasing accuracy and completeness.
<table>
<thead>
<tr>
<th>Stages</th>
<th>Acc.(mm)</th>
<th>Comp.(mm)</th>
<th>Overall(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.740</td>
<td>0.389</td>
<td>0.564</td>
</tr>
<tr>
<td>2</td>
<td>0.471</td>
<td>0.283</td>
<td>0.377</td>
</tr>
<tr>
<td>1</td>
<td>0.441</td>
<td>0.268</td>
<td>0.354</td>
</tr>
<tr>
<td>0</td>
<td>0.427</td>
<td>0.277</td>
<td>0.352</td>
</tr>
</tbody>
</table>

Table 1: Quantitative results of different stages on DTU’s evaluation set [1] (lower is better). The depth maps on stages 3, 2 and 1 are upsampled to reach the same resolution as input images and then used to reconstruct point clouds.

Figure 3: Visualization of sampling locations in adaptive propagation for two typical situations: object boundary and textureless region. The center points and sampling points are shown in red and blue respectively.

6. Visualization of Adaptive Propagation

We visualize the sampling locations in two typical situations, at an object boundary and a textureless region. As shown in Fig. 3, for the pixel p at the object boundary, all sampling points tend to be located on the same surface as p. In contrast, for the pixel q in the textureless region, the sampling points are spread over a larger region. By sampling from a large region, a more diverse set of depth hypotheses can be propagated to q and reduce the local ambiguity for depth estimation in the textureless area. The visualization shows two examples how the adaptive propagation successfully adapts the sampling to different challenging situations.

7. Visualization of Adaptive Evaluation

Here, we again visualize the sampling locations for two situations, at an object boundary and a textureless region. Fig. 4 demonstrates that for the pixel p at the object boundary, sampling points tend to stay within the boundaries of the object, such that they focus on similar depth regions. For the pixel q in the textureless region, the points are distributed sparsely to sample from a large context, which helps to obtain reliable matching and to reduce the ambiguity. Again, the visualization demonstrates how our adaptive evaluation adapts the sampling for the spatial cost aggregation to different situations.

8. Visualization of Point Clouds

We visualize reconstructed point clouds from DTU’s evaluation set [1], Tanks & Temples dataset [9] and ETH3D benchmark [11] in Fig. 5, 6, 7.
Figure 5: Reconstruction results on DTU’s evaluation set [1].
Figure 6: Reconstruction results on Tanks & Temples dataset [9].
Figure 7: Reconstruction results on ETH3D benchmark [11].
References

