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A. Related Work: Optimization-based Attacks
& Generation-based Attacks

In image classification, an adversarial example is usually
a carefully modified image, which is intentionally perturbed
by adding visually imperceptible perturbations to the orig-
inal image but can confuse deep model to misclassify it.
Since Szegedy et al. [20] discovered the properties of ad-
versarial examples, various adversarial attack methods in
image classification have been proposed to fool a trained
DNN. According to the information of target model ex-
posed to the adversary, adversarial attacks can be catego-
rized as white-box attacks (e.g., FGSM [7], I-FGSM [12],
PGD [15] and C&W [3]) and black-box attacks (e.g. SBA
[17] and ZOO [4]). For white-box attack, the adversary
knows the whole network architecture and parameters so
that it can design the adversarial perturbations by calcu-
lating the gradient of the loss w.r.t. inputs. For example,
FGSM aims to increase the loss of the target model along
the gradient direction once. I-FGSM updates the perturba-
tions multiple times with small step size and reaches better
attack performance, which is an iterative variant of FGSM
in essence. For black-box attack, only the input and output
are available to the adversary, thus it is difficult to get the
gradient directly. One solution is that we can use the trans-
ferability of adversarial examples to achieve black-box at-
tacks. For instance, SBA adopts adversarial examples gen-
erated by a substitute model to attack the target model. An-
other way directly approximates the gradient base on the
input data and output scores, such as ZOO. Although black-
box attack is difficult and its success rates are inferior to
white-box attack, it is more general and practical.

The above attack methods are optimization-based, which
regard the generation of adversarial examples as an opti-
mization problem and use optimizers (e.g., box-constrained
L-BFGS [20]) or gradient-based methods to solve it.
Optimization-based methods are powerful but quite slow

because they need to access the target model iteratively
for satisfactory attack performance. Recently, generation-
based attack methods received much more attention due to
their high-efficiency during test phase. Generation-based
attack methods learn a generative model which transforms
the input images into the corresponding adversarial sam-
ples. Once the generative model trained, it do not need to
access the target model again and can generate adversarial
examples with one-forward pass. Baluja et al. [2] firstly
applied a generative model to take a original image as in-
put and to generate its adversarial example. Subsequently
Xiao et al. [21] used GAN [6] to produce adversarial exam-
ples with high perceptual quality. Moreover, Mopuri et al.
[16] and Poursaeed et al. [18] proposed generative architec-
tures to generate adversarial perturbations from any given
random noise. Finally, to achieve arbitrary target (category)
attack, MAN [8] is designed a special generator which com-
bines the features of the target label and the input image and
outputs the targeted adversarial sample.

B. Optimization

The overall framework is actually a generative adversar-
ial network, so the overall objective function can be written
as a minimax optimization problem:

(θp, θg) = arg minLpro(θp) + Lgen(θg)− Ldis(θ̂d)

θd = arg maxLpro(θ̂p) + Lgen(θ̂g)− Ldis(θd)
s.t. B(p) ∈ {−1, 1}K×M .

(1)

Like all other generative adversarial networks, we optimize
the entire network in an alternate way. Firstly, when fixing
B and L, we optimize the Lpro over θp. Then, we opti-
mize Lgen over θg by fixing the parameter θp. Finally, we
optimize Ldis over θd by fixing the parameters θp and θg .
The whole optimization process is outlined in algorithm 1



Figure 1. An example to retrieve top-10 similarity samples on NUS-WIDE with the benign query and its adversarial query.

Algorithm 1 Optimization procedure of ProS-GAN.
Input: Image dataset O = {(xi, yi)}Ni=1, label set L =
{yi}Mi=1, a pre-trained hashing model F = sign(fθ(·)),
and the hash code matrix B for O produced by F .

Output: Network parameters (θp, θg, θd).
Initialize:
Initialize parameters θp, θg , θd, α1, α2, α3, α, β
Learning rate η, batch size n
while not converge do

Provide a batch of image set Ô and target labels L̂
Update θp by the gradient descent:
θp ← θp − η∆θp

1
n (Lpro + Lgen − Ldis)

Update θg by the gradient descent:
θg ← θg − η∆θg

1
n (Lpro + Lgen − Ldis)

Update θd by the gradient descent:
θd ← θd − η∆θd

1
n (Ldis − Lpro − Lgen)

end while

for detail. Once the whole networks are trained in conver-
gence, for any given target label and image, ProS-GAN can
generate the corresponding adversarial example with a fast
forward pass.

C. Discussion on Differences from the Related
Works

Difference from P2P [1] and DHTA [1]. P2P and
DHTA heuristically select a hash code from the set of hash
codes of samples with the target label as objective code for
targeted attack. In contrast to P2P and DHTA, we design
a prototype network (PrototypeNet) to learn the prototype
code of the target label to supervise the generation of ad-
versarial examples. Because the PrototypeNet is designed
to maximize the similarities of hash codes of samples with
relevant labels and separability of those with irrelevant la-
bels, the generated prototype code is the more representa-
tive and discriminative code of the hash codes of samples
with the target label. In this way, they can be used as the
target code to achieve more effective targeted attack per-

formance. In addition, compared to gradient-based hash-
ing attack methods [22, 1], our proposed generation-based
scheme is clearly faster to produce adversarial examples
based on the optimization strategy, which is verified in the
experiments section. Therefore, our method is intrinsically
different from the existing algorithms, but more efficient
and effective for targeted attack of deep hashing.

Difference from MAN [8]. MAN designs a special gen-
erator to realize arbitrary-label targeted attacks on image
classification model by combining input categories and im-
ages features. In contrast, our work is conceived for at-
tacking deep hashing models. Due to the difference be-
tween classification and hashing, we design an effective
PrototypeNet to learn semantic representation and proto-
type code. Furthermore, we upsample the semantic repre-
sentation of the target label to the same dimension as the
image, and then concatenation them together as the input of
the encoder-decoder Gxt. In addition, our proposed frame-
work is essentially a generative adversarial network and we
employ the adversarial learning between the generator and
the discriminator to improve the visual quality of generated
adversarial examples. Therefore, our work is totally differ-
ent from MAN on problem definition, objective design, and
framework construction.

Difference from SSAH [13]. In terms of tasks, SSAH
is formulated for cross-modal hashing, while ProS-GAN
is used for adversarial attack. Particularly, SSAH em-
ploys the simple label network for generating semantic hash
codes, which could be used to guide the image and text
branches. As for differences between PrototypeNet and La-
belNet in SSAH [13], our PrototypeNet learns the prototype
code from the hash codes produced by the attacked hash-
ing model, while the LabelNet is a self-supervised network
to generate semantically preserved hash codes. Moreover,
they have different objectives on model design and feature
learning purpose. Therefore, they are completely different.
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(a) FLICKR-25K

(b) NUS-WIDE

(c) MS-COCO

Figure 2. Visualization examples of generated adversarial samples.

D. Visualization

In this section, we provide some visual examples of the
adversarial images generated by ProS-GAN on FLICKR-
25K [10], NUS-WIDE [5] and MS-COCO [14]. The com-
parison results are illustrated in Figure 2. As we can see,
the adversarial examples are almost the same as the benign
examples (i.e. original images). An example of the retrieval
results with a benign image and its adversarial example gen-
erated by our method is displayed in Figure 1.

E. Transferability

Cross-hash bit transfer: In image hashing, the targeted
adversarial perturbations generated from one hash bit can
transfer to another hash bit based on the same architecture
of hashing model, called cross-hash bit transfer [22]. From
Table 1, we observe that the adversarial perturbations with
different hash bits can achieve much similar t-MAP. We can
see that the results of cross-hash bit transfer are superior to

Table 1. t-MAP (%) of adversarial examples from one hash bit to
another hash bits based on VGG11 backbone for NUS-WIDE.

Method Code length 12 bits 24 bits 32 bits 48 bits

DHTA

12 bits 74.04 74.86 74.94 74.83
24 bits 73.62 75.60 75.71 75.69
32 bits 73.32 75.03 75.65 75.49
48 bits 72.52 74.19 74.69 75.63

ours

12 bits 77.73 76.20 76.05 76.27
24 bits 76.60 78.21 78.39 78.25
32 bits 76.42 77.53 78.25 77.81
48 bits 75.19 76.06 76.71 78.75

the state-of-the-art DHTA.
Cross-network transfer: Cross-network transfer means

that the adversarial perturbations computed from one DNN
can attack another DNN successfully, which is also a black
box attack. In this section, we supplement the transfer re-
sults on FLICKR-25K and MS-COCO datasets, as summa-
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rized in Table 2 and 3. We observe that the adversarial
samples generated from one hash code length model has
similar targeted attack performance to another code length
model based on the same architecture, which is cross-hash
bit transfer [22]. For example, applying the adversarial ex-
amples generated by ProS-GAN from DH-AlexNet to at-
tack DH-AlexNet* on MS-COCO (Table 3) can achieve the
similar t-MAP result (67.67%) for 66.26% of DH-AlexNet.
In most cases, the cross-hash bit transfer results of ProS-
GAN are better than DHTA. In addition, it is known that the
advesarial examples computed from one backbone network
can attack another network, called cross-network transfer
[22]. Our ProS-GAN also has better cross-network transfer
than DHTA. For example, in Table 2, when we adopt the
adversarial examples generated from DH-VGG11 to attack
DH-ResNet18*, the t-MAP is 82.25%, which is higher than
72.26% of DHTA. From these results, we conclude that the
adversarial samples generated by our method have better
transferability.
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Table 2. Transfer t-MAP (%) on FLICKR-25K dataset. DH-AlexNet, DH-VGG11 and DH-ResNet18 denote 12 bits DPSH models based
on AlexNet [11], VGG11 [19] and ResNet18 [9], respectively, and ”*” denotes their 32 bits variants.

Method Attacked model DH-AlexNet DH-AlexNet* DH-VGG11 DH-VGG11* DH-ResNet18 DH-ResNet18*

DHTA

DH-AlexNet 82.26 82.50 67.63 67.88 67.62 67.37
DH-AlexNet* 81.89 84.08 67.68 68.18 67.52 67.56
DH-VGG11 64.73 64.40 86.27 87.35 72.32 72.26
DH-VGG11* 65.13 64.82 86.29 88.35 73.10 73.61
DH-ResNet18 63.50 63.33 66.19 65.81 85.48 86.55
DH-ResNet18* 63.42 63.27 65.92 65.61 85.38 87.80

ProS-GAN

DH-AlexNet 84.89 84.52 78.72 79.09 78.45 78.06
DH-AlexNet* 80.95 81.99 77.44 77.48 76.72 77.43
DH-VGG11 73.67 73.07 89.05 88.14 81.90 82.25
DH-VGG11* 73.34 72.77 89.00 91.10 79.32 79.92
DH-ResNet18 73.50 72.45 75.90 75.22 87.95 87.65
DH-ResNet18* 72.42 72.95 76.18 75.97 86.25 88.19

Original 62.83 62.61 63.58 63.49 63.23 63.20

Table 3. Transfer t-MAP (%) on COCO dataset. DH-AlexNet, DH-VGG11 and DH-ResNet18 denote 12 bits DPSH models based on
AlexNet [11], VGG11 [19] and ResNet18 [9], respectively, and ”*” denotes their 32 bits variants.

Method Attacked model DH-AlexNet DH-AlexNet* DH-VGG11 DH-VGG11* DH-ResNet18 DH-ResNet18*

DHTA

DH-AlexNet 57.05 58.39 45.23 45.83 45.03 45.28
DH-AlexNet* 55.88 58.35 45.15 45.86 44.94 45.24
DH-VGG11 44.49 45.16 59.85 61.78 51.61 51.56
DH-VGG11* 44.35 44.95 59.12 63.22 50.38 51.18
DH-ResNet18 42.98 43.77 44.56 44.77 61.88 64.44
DH-ResNet18* 42.95 43.73 44.13 44.54 62.12 65.42

ProS-GAN

DH-AlexNet 66.26 67.67 53.79 55.57 54.22 55.22
DH-AlexNet* 66.49 69.41 53.73 55.45 54.56 55.14
DH-VGG11 49.75 51.00 66.22 65.35 56.14 54.49
DH-VGG11* 50.14 51.21 67.08 71.65 58.23 57.48
DH-ResNet18 49.30 49.67 49.47 51.23 70.27 72.07
DH-ResNet18* 48.87 50.43 49.36 51.60 68.75 72.95

Original 42.41 43.24 42.33 42.67 42.40 42.85

5


