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1. Ablation Studies
Hyperparameter search. We searched the number of
centers, the transfer strength, the frequent-class ratio, λ1,
and λ2 for RSG by conducting experiments on ResNet-32
[2] with LDAM-DRW [1]. The results are shown in Fig. 1.
We initially set the frequent-class ratio to 0.5 for step dis-
tributions and 0.2 for long-tailed distributions. At first, we
explored different numbers of centers in each class.

As Fig. 1 shows, we obtain the lowest error rate in most
cases when the number of centers is equal to 15. Then, con-
sidering that the transfer strength determines the number
of newly generated samples, we explored how error rates
change with different settings of the transfer strength. We
conclude from Fig. 1 that, in general, the error rates gradu-
ally decline with the increase of transfer strength for long-
tailed imbalanced distributions. As for step imbalanced dis-
tributions, using a stronger transfer strength always leads to
higher error rates. In addition, we explored how frequent-
class ratio impacts the performance RSG. As Fig. 1 shows,
RSG achieves the best performance when α is set to 0.2
for long-tailed imbalanced distributions and 0.5 for step-
imbalanced distributions. Lastly, we also verified the im-
pacts brought by different settings of λ1 and λ2 separately.
The results show that a superior performance is obtained
when λ1 and λ2 are equal to 0.1 and 0.01, respectively.
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Figure 1. Top-1 error rates of ResNet-32 with RSG for different
numbers of centers, transfer strengths, frequent-class ratios, λ1,
and λ2 on Imbalanced CIFAR-10 (left column) and CIFAR-100
(right column) for ρ = 50.


