
Supplementary Materials for Repopulating Street Scenes

Yifan Wang1∗ Andrew Liu2 Richard Tucker2 Jiajun Wu3

Brian L. Curless1,2 Steven M. Seitz1,2 Noah Snavely2

1University of Washington 2Google Research 3Stanford University

1. Implementation Details

1.1. Data

We collected short (stationary camera) image bursts of
street scenes from Google Street View, captured between
2014 and 2020. Using GPS and structure from motion, we
identified image bursts coming from parked Street View cars.
The cooldown between each capture is about five seconds.
The training image bursts were captured in major US cities,
including San Francisco, Seattle, Los Angeles, San Jose,
New York City, Boston, Chicago and Phoenix. We also
collected a test set from nearby cities, including Jersey City,
Brooklyn, Berkeley, San Diego, Long Beach and Pittsburgh,
to ensure there is no overlap with the training set. Each
image burst consists of at least 10 images. Given an image
stack, we calculated the median image by taking the channel-
wise median value per pixel for the whole stack. We used the
median image of the bursts as a “clean plate,” free of moving
objects and their shadows (we also refer to this image as
the “background image”). In total, we collected 142,778
image/background pairs for training and 16,034 as a test set.

We use Mask R-CNN [5] as our instance segmentation
network, and set its confidence threshold Mask R-CNN to
0.6 to keep the partially occluded objects. For class maps
used in the removal and insertion network, we segment out
the following classes that often represent moving objects
(or parts of moving objects) in street scenes: person, bicy-
cle, car, motorcycle, airplane, train, bus, truck, boat, bird,
cat, dog, backpack, handbag, tie, suitcase, and skateboard.
We compare the objects detected in the input image and in
the background image to determine whether an object is
moving. If a bounding box in the input image has an IOU
(intersection-over-union) of more than 0.6 with a bounding
box in the background image, we consider this object to be
static (not moving), and thus do not include it in the class
mask. Finally, we only use an image for training if its class
mask’s area is more than 1% of the whole frame.

∗This work was done while Yifan was an intern at Google.

1.2. Removal Network

The generator component of our removal network is
inspired by [2]. It has three branches of residual blocks
predicting the inpainting mask, appearance flow, and high-
dimensional features respectively. Each branch has 5 resid-
ual blocks. The supervision for the inpainting mask is com-
puted by thresholding the color difference between the me-
dian image and the original image. We assume such dif-
ferences are caused by moving objects and their shadows.
We use the “clean plate” median background image as the
ground truth image to be predicted. The loss function con-
sists of two multi-scale discriminators with LSGAN loss,
a feature matching loss, a VGG perceptual loss for the ob-
ject/shadow removed image, and a cross-entropy loss for the
inpainting mask. The initial learning rate is set to 1e-5 for 25
epochs and then decays linearly to 0 over another 25 epochs.
We use the Adam optimizer and a batch size of 8. We train
our network on eight NVIDIA Tesla P100 GPUs; it takes
three days to train.

1.3. Sun Estimation Network

Based on the time and location of an image, we calculate
the ground truth sun position using solar equations. We
then convert this sun position to two one-hot vectors as
the ground truth supervision for sun azimuth and elevation
angle. The sun estimation network uses a similar structure as
a ResNet50 network [1], where the last fully connected layer
is replaced with two, one for azimuth and one for elevation.
This network is trained with a cross-entropy loss with a
smooth coefficient of 0.1. We use the SGD optimizer with
a learning rate of 1e-3. We train the network for 20 epochs
with batch size 64. We train on eight NVIDIA Tesla P100
GPUs for one day.

1.4. Insertion Network

The generator component of the insertion network is also
inspired by [2]. It has five residual blocks, followed by two
transposed convolution upsampling branches, one for the
bias map and one for the gain map. We use the original
street image as ground truth supervision. The loss function
is the same as in [3], i.e., two multi-scale discriminators with



Method All Sunny Cloudy SSIM

Shadow-free composite 0.0183 0.0140 0.0124 0.029
Shadow network [4] 0.0171 0.0125 0.0117 0.029
Ours (w/o depth map) 0.0189 0.0133 0.0125 0.028
Ours (w/o sun position) 0.0164 0.0117 0.0109 0.029
Ours 0.0165 0.0116 0.0109 0.029

Table 1. Object insertion results for cropped object regions, on all test images, as well as the sunny subset, and the cloudy subset, measured
in LPIPS [7] and SSIM. Lower is better.

Method All Sunny Cloudy

Input 0.085 0.087 0.084
CRA [6] 0.076 0.077 0.075
Ours 0.057 0.058 0.057

Table 2. Object removal results for cropped object regions, on all
test images, as well as the sunny subset, and the cloudy subset,
measured in LPIPS [7]. Lower is better.

Method All

Input 0.085
CRA [6] (w/ our mask) 0.078
Ours (w/o mask) 0.074
Ours (w/o flow) 0.061
Ours 0.057

Table 3. Object removal results for cropped object regions on all
test images, measured in LPIPS [7]. Lower is better.

LSGAN loss, a feature matching loss, and a VGG perceptual
loss. The initial learning rate is set to 1e-4 for 15 epochs and
then decays linearly to 0 over another 15 epochs. We use the
Adam optimizer and a batch size of 8. We train our network
on eight NVIDIA Tesla P100 GPUs, and it takes three days
to train.

1.5. Timing for Each Network

At test time, the sun estimation network takes 50ms per
image on an NVIDIA Titan Xp, and the removal and inser-
tion networks take 150ms.

2. Additional Experiments

2.1. Removal Network

We found that shadows only occupy a small portion of
the whole frame. Therefore, as an additional evaluation
protocol, we center crop out the object region using a square
that is 1.5 times the bounding box size to further evaluate the
performance of the removal network, focused on the object
and its surroundings (including its shadow), as opposed to
unmodified parts of the image far from objects. We evaluated
on all the test images as well as the sunny and cloudy subset

(∼150 images each). Quantitative results on cropped regions
are shown in Table 2. Our method has a clear advantage over
the traditional inpainting method [6]. Unlike in standard
inpainting, our model automatically detect and remove hard
and soft shadows, not just masked objects.

Additional ablations on our removal network are shown
in Table 3. We compared our full removal network with 1)
CRA [6] using our (thresholded) inpainting mask; 2) ours
without inpainting mask; and 3) ours without flow map.
These results demonstrate the effectiveness of the inpainting
mask and flow map modules. Note that our inpainting mask
is trained end-to-end with our flow-map inpainter, which
offers advantages over separately trained modules: though
there may be errors in mask estimation, the inpainter is
trained to handle them when recombined to create the fi-
nal object/shadow-removed image. An interesting area of
future work is to incorporate and train different inpainting
algorithms (in addition to our flow map method) end-to-end
within our network.

Additional qualitative results are shown in Figure 1.

2.2. Insertion Network

The insertion network only modifies a small part of the
fully image. However, common metrics like FID, SSIM,
and LPIPS, compare image-level statistics. Accordingly, in
Table 1 we report LPIPS and SSIM scores on crops around
inserted objects, as described in Section 2.1. The gains over
“shadow network” [4] are clearer with cropped LPIPS; w/ and
w/o sun position still have similar LPIPS scores; and SSIM
suggests minimal differences. Ultimately, we think these
numbers illustrate challenges with the metrics themselves. In
practice, we find the depth map and sun position appreciably
improve overall visual quality, leading to fewer detached or
broken shadows in Figure 2, something these metrics are
evidently not attuned to.

We show additional qualitative results for the task of
inserting objects in Figure 2. Our method has an advantage
over other models. On sunny days, our full model benefits
from the depth map, sun position and x-y grid and outputs
realistic shadows with details. On cloudy days, our model
synthesize subtle soft shadows, still performing the best
among all methods and ablations.



2.3. Repopulating Street Scenes

We show additional qualiitative results for the full task of
repopulating street scenes (involving removal, sun position
estimation, and insertion) in Figure 3.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[2] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In Euro-
pean conference on computer vision, pages 694–711. Springer,
2016.

[3] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8798–8807, 2018.

[4] Yifan Wang, Brian L. Curless, and Steven M. Seitz. People
as scene probes. In Eur. Conf. Comput. Vis., pages 438–454.
Springer, 2020.

[5] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo,
and Ross Girshick. Detectron2. https://github.com/
facebookresearch/detectron2, 2019.

[6] Zili Yi, Qiang Tang, Shekoofeh Azizi, Daesik Jang, and Zhan
Xu. Contextual residual aggregation for ultra high-resolution
image inpainting. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 7508–7517, 2020.

[7] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
586–595, 2018.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


Ground truthInput image and

Class mask

OursCRA

Figure 1. Object removal results on the test set. Three examples are shown, with red boxes indicating close-up regions (inset regions are
shown in a row below the full images). The traditional inpainting method [6] only inpaints the area within the mask and leaves leftover
shadows. Our method removes objects completely along with their shadows. In addition, the prior inpainting method can fail in the case of
large objects (such as the tree in the last example).



Shadow-free composite 

and Class mask

Shadow network Ours 

(w/o sun position)

Ours 

(w/o depth)

Ours Ground truth

Figure 2. Object insertion results on the test set. Three examples are shown, with red boxes indicating close-up regions. Our method
generates the most realistic and detailed shadows. The sun position input helps the network determine the shape of the shadow. The depth
maps prevent the network from synthesizing broken shadows.



Input image Repopulation resultsRemoval results

Figure 3. Qualitative results for repopulating street scenes. From left to right: the input image, the background image after removing all
people, and repopulation results. Our pipeline selects people matching the scene’s lighting, places them randomly on sidewalks and roads,
and synthesizes realistic shadows.


