
Rethinking and Improving the Robustness of Image Style Transfer
Supplementary Material

Pei Wang
UC, San Diego
pew062@ucsd.edu

Yijun Li
Adobe Research
yijli@adobe.com

Nuno Vasconcelos
UC, San Diego
nuno@ucsd.edu

1. Ablation study

To validate that the poor performance of the ResNet is
mainly due to the residual connection, we perform the abla-
tion study over other network components and their combi-
nations: (1) VGG-bn: VGG with batch normalization (bn)
where the bn layer is not used in the original VGG but is
introduced in ResNet. (2) VGG-c7: Replacing the first layer
conv3×3 in VGG with that conv7×7 in ResNet. There are
three kinds of conv1×1 kernels in ResNet, conv1×1 that
increases the channel number, conv1×1 that decreases the
channel number, and conv1×1 that maintains the channel
number, i.e. conv2 1. We denote them by ‘Ic1’, ‘Dc1’,
‘c1’ respectively. This introduces (3) VGG-Ic1: VGG with
conv1x1 that increases the channel number, (4) VGG-Dc1:
VGG with conv1x1 that decreases the channel number, and
(5) VGG-c1: VGG with conv1x1 that maintains the channel
number. We also investigate the influence of the combination
of many factors. (6) VGG-Ic1-Dc1, (7) VGG-c7-Ic1, (8)
VGG-c7-Dc1, (9) VGG-c7-Ic1-Dc1. The impact of other
factors like the number of channels per layer or network
depth have been discussed and shown to be less important
in [1]. Figure 1 presents two stylization examples obtained
by models (1)∼(9). It can be seen that the influence brought
by those network components are much smaller than that
by the residual connection (as shown in Figure 2 of the pa-
per). Therefore, we conclude that the residual connection in
ResNet is the root cause which results in the poor stylization
performance.

2. More results

2.1. Style loss

We also compute the style loss for images synthesized
by a pre-specified model (usually a pre-trained VGG) [4, 3].
Specifically, images are stylized using the different network
architectures, with and without SWAG. Stylized images are
then fed into a VGG pre-trained on ImageNet and the loss
of (4) is computed. This measures the similarity between
synthesized and style image, ignoring content information.

Note that this metric has a certain bias towards the VGG.
Table 1 shows the results of the style loss comparison,

based on activations from five layers (conv1 1, conv2 1,
conv3 1, conv4 1, conv5 1) of the pre-trained VGG1. We
randomly select 10 content images and 10 style images
from [2, 1, 5], and compute the averaged style loss over
all 100 content-style combinations. A few conclusions can
be drawn. First, for both pre-trained and random models,
SWAG improves the performance of each non-VGG network.
Second, for random networks, the gains of SWAG are of two
orders of magnitude. Third, for both random and pre-trained
models, the ResNet with SWAG even outperforms the stan-
dard VGG model. Fourth, SWAG even slightly improves
the performances of the VGG model, which does not suffer
from a noticeable peaky large activation problem. Finally,
SWAG significantly reduces the performance gap between
random and pre-trained models.

2.2. Visual comparison

More comparisons of images synthesized by different
networks corresponding to the 12 comparison pairs in Table
2 of the paper are shown in Figure 3∼14.

3. Ablation study on T in Eq. (11) of the paper

In general, T should 1) increase asH in Eq. (5) decreases
and 2) be ≥ 1 (note that H ∈ [0, 1]). This is to guarantee
SWAG can always increase the entropy and be more pow-
erful for ultra-peaky activations. The ablation study experi-
ment on temperature (T ) in Eq. (11) is conducted. We found
that mean entropy increases with T but saturates quickly
for T > 1. The mean style loss across different architec-
tures also decreases until saturation for T > 1. It indicates
T = 1 is sufficient and larger T will not result in further
improvement.

1The models, pre-trained on ImageNet, are those provided by Py-
Torch (https://pytorch.org/docs/stable/torchvision/
models.html).



Pre-trained Random
Arch. ResNet Inception WRN VGG ResNet Inception WRN VGG
Standard 3.8(9.1)e4 6.3(3.4)e4 3.8(4.5)e4 2.5(4.6)e4 1.8(1.3)e6 1.3(9.7)e6 1.3(7.7)e6 3.9(7.1)e4
SWAG 2.3(4.3)e4 4.0(1.9)e4 2.6(6.3)e4 2.4(4.6)e4 3.4(1.3)e4 7.9(6.6)e4 6.3(3.6)e4 3.7(7.0)e4

Table 1: Style loss comparison of different architectures (mean(std)).

4. Implementation details
The content and style image are subject to the standard

normalization. Specifically, all images are first converted to
[0.0, 1.0] from [0, 255] and then normalized by subtracting
the mean ([0.485, 0.456, 0.406]) and divided by the standard
deviation (0.229, 0.224, 0.225]) of each RGB color channel.
All results are of size 512 × 512. All pre-trained models
used in the paper are from PyTorch2. We follow the setup of
[2] for the VGG model, i.e., using features at the conv1 1,
conv2 1, conv3 1, conv4 1, conv5 1 layer for style loss of
Eq. (4) and Eq. (13), and the conv4 2 layer for content loss
of Eq. (3) and Eq. (12). We set α = 1 and β = 4e10 in
Eq. (2). For ResNet, we follow the setting of [6], but, in
addition to the features at the conv2 3, conv3 4, conv4 6,
conv5 3 layer, we also use the conv1 2 layer in Eq. (4)
and Eq. (13). This is for fair comparison with the VGG
implementation of [2], which uses five layers at different
scales. The conv4 6 layer is used for the computation of
content loss. We set α = 1 and β = 1e17. The same setting
is for WRN. On Inception v3, the conv2d 1a, conv2d 3b,
mixed 5b, mixed 6a, mixed 7a leayers are used, again for
consistency with the VGG model. The mixed 5b layer is for
content loss computation, and we set α = 1, β = 4e10.

References
[1] Len Du. How much deep learning does neural style transfer

really need? an ablation study. In The IEEE Winter Conference
on Applications of Computer Vision, pages 3150–3159, 2020.

[2] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image
style transfer using convolutional neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2414–2423, 2016.

[3] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In Euro-
pean conference on computer vision, pages 694–711. Springer,
2016.

[4] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,
and Ming-Hsuan Yang. Universal style transfer via feature
transforms. In Advances in neural information processing
systems, pages 386–396, 2017.

[5] Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and
Jan Kautz. A closed-form solution to photorealistic image
stylization. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 453–468, 2018.

2https://pytorch.org/docs/stable/torchvision/
models.html

[6] Reiichiro Nakano. https://distill.pub/2019/
advex-bugs-discussion/response-4/.



(a) contentstyle (b) r-VGG-bn (c) r-VGG-Ic1 (d) r-VGG-Dc1 (e) r-VGG-c1

(f) r-VGG-c7 (g) r-VGG-Ic1-Dc1 (h) r-VGG-c7-Ic1 (i) r-VGG-c7-Dc1 (j) r-VGG-c7-Ic1-Dc1

Figure 1: Results comparisons of different architectures. (‘r-’ represent randomly initialized. Detailed comparison need to
zoom in on pictures. ‘∗’ denotes our proposal.)



(a) contentstyle (b) p-R (c) p-R∗

Figure 2: Comparison of neural style transfer performance between p-R and p-R SWAG (denoted with ∗) models



(a) contentstyle (b) p-I (c) p-I∗

Figure 3: Comparison of neural style transfer performance between p-I and p-I SWAG (denoted with ∗) models



(a) contentstyle (b) p-W (c) p-W∗

Figure 4: Comparison of neural style transfer performance between p-W and p-W SWAG (denoted with ∗) models



(a) contentstyle (b) r-R (c) r-R∗

Figure 5: Comparison of neural style transfer performance between r-R and r-R SWAG (denoted with ∗) models



(a) contentstyle (b) r-I (c) r-I∗

Figure 6: Comparison of neural style transfer performance between r-I and r-I SWAG (denoted with ∗) models



(a) contentstyle (b) r-W (c) r-W∗

Figure 7: Comparison of neural style transfer performance between r-W and r-W SWAG (denoted with ∗) models



(a) contentstyle (b) p-V (c) p-R∗

Figure 8: Comparison of neural style transfer performance between p-V and p-R SWAG (denoted with ∗) models



(a) contentstyle (b) p-V (c) p-I∗

Figure 9: Comparison of neural style transfer performance between p-V and p-I SWAG (denoted with ∗) models



(a) contentstyle (b) p-V (c) p-W∗

Figure 10: Comparison of neural style transfer performance between p-V and p-W SWAG (denoted with ∗) models



(a) contentstyle (b) r-V (c) r-R∗

Figure 11: Comparison of neural style transfer performance between r-V and r-R SWAG (denoted with ∗) models



(a) contentstyle (b) r-V (c) r-I∗

Figure 12: Comparison of neural style transfer performance between r-V and r-I SWAG (denoted with ∗) models



(a) contentstyle (b) r-V (c) r-W∗

Figure 13: Comparison of neural style transfer performance between r-V and r-W SWAG (denoted with ∗) models


