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In this supplementary material, we first introduce addi-
tional notations, and give the proof of Lemma 1 in Ap-
pendix A. Then we discuss the reason why the parame-
ter update satisfying Condition 2 is the descent direction
in Appendix B. Finally, in Appendix C, we prove that
〈∆wt,s,gt,s〉 ≥ 0 claimed in Sec. 4.1 of the manuscript.

Notations
We first introduce additional notations here. When feed-

ing dataXp from task Tp (p ≤ t) to f with parameters wt,s,
the input feature and output feature at the l-th linear layer
are denoted as X l

p,t,s and Olp,t,s respectively, then

Olp,t,s = X l
p,t,sw

l
t,s, X

l+1
p,t,s = σl(O

l
p,t,s)

withX1
p,t,s = Xp. In addition, by denoting the learning rate

as α, we have

wlt,s = wlt,s−1 − α∆wlt,s−1, l = 1, . . . , L.

Appendix A
In this appendix, we show the proof of Lemma 1 in the

manuscript. Lemma 1 tells us that, when we train network
on task Tt, the network retains its training loss on data Xp

in the training process, if the network parameter update sat-
isfies Eqn. (1) at each training step. We first recall Lemma
1 as follows, then give the proof.

Lemma 1. Given the dataXp from task Tp, and the network
f with L linear layers is trained on task Tt (t > p). If
network parameter update ∆wlt,s lies in the null space of
X l
p,t−1, i.e.,

X l
p,t−1∆wlt,s = 0, (1)

at each training step s, for the l-th layer of f (l = 1, . . . , L),
we have X l

p,t = X l
p,t−1 and f(Xp, w̃t−1) = f(Xp, w̃t).

Proof. The proof is based on the recursive structure of net-
work and iterative training process. We first prove that
X l
p,t,1 = X l

p,t−1 and f(Xp,wt,1) = f(Xp, w̃t−1) hold

for s = 1, and then illustrate that X l
p,t,s = X l

p,t−1 and
f(Xp,wt,s) = f(Xp, w̃t−1) hold for each s > 1, which
suggests that Lemma 1 holds.

When s = 1, considering that we initialize parameters
wt,0 = w̃t−1, we have

X l
p,t,0 = X l

p,t−1, O
l
p,t,0 = Olp,t−1. (2)

Therefore, at the first layer (l = 1) where X1
p,t,1 =

X1
p,t,0 = X1

p,t−1 (all of them equal to Xp when l = 1),

O1
p,t,1 = X1

p,t,1w
1
t,1

= X1
p,t,0(w1

t,0 − α∆w1
t,0)

= X1
p,t,0w

1
t,0 − αX1

p,t−1∆w1
t,0

= X1
p,t,0w

1
t,0

= O1
p,t,0, (3)

where the fourth equation holds due to Eqn. (1). Further-
more, we have

X2
p,t,1 = σ1(O1

p,t,1) = σ1(O1
p,t,0) = X2

p,t,0 = X2
p,t−1,

(4)
i.e., the input feature X2

p,t,1 equals to X2
p,t−1 at the second

linear layer, based on which, we can recursively prove that

Olp,t,1 = Olp,t,0 = Olp,t−1

and
X l
p,t,1 = X l

p,t,0 = X l
p,t−1

for l = 3, . . . , L by replacing l = 1 with l = 2, . . . , L
in Eqns. (3) and (4), then we have f(Xp,wt,1) = f(Xp,
w̃t−1).

We now have proved that X l
p,t,s = X l

p,t−1, Olp,t,s =

Olp,t−1 (l = 1, . . . , L) and f(Xp,wt,s) = f(Xp, w̃t−1)
hold for s = 1. Considering the iterative training process,
we can prove that

X l
p,t,s = X l

p,t−1, O
l
p,t,s = Olp,t−1 (l = 1. . . . , L)

and
f(Xp,wt,s) = f(Xp, w̃t−1)

1
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hold for s = 2, ..., by repeating the above process with s =
2, ....

Finally, we have X l
p,t = X l

p,t−1 and f(Xp, w̃t−1) =
f(Xp, w̃t), since Lemma 1 holds for each s ≥ 1.

Appendix B

We first recall the Condition 2 in the manuscript as fol-
lows, then prove that parameter update ∆wt,s satisfying
condition 2 is the descent direction, i.e., the training loss
after updating parameters using ∆wt,s will decrease.

Condition 2 (plasticity). Assume that the network f is
being trained on task Tt, and gt,s = {g1t,s, . . . , gLt,s}
denotes the parameter update generated by a gradient-
descent training algorithm for training f at training step
s. 〈∆wt,s,gt,s〉 > 0 should hold where 〈·, ·〉 represents
inner product.

We now discuss the reason why ∆wt,s is the descent
direction, if it satisfies condition 2. For clarity, we denote
the loss for training network f as L(w) which ignores the
data term with no effect. The discussion can also be found
in Lemma 2 of the lecture1.

By denoting the learning rate as α, and h(α) , L(wt,s−
α∆wt,s), according to Taylor’s theorem, we have

h(α) = h(0) +∇αh(0) + o(α),

i.e.,

L(wt,s − α∆wt,s) = L(wt,s)− α〈∆wt,s,gt,s〉+ o(α),

where |o(α)|α → 0 when α → 0. Therefore, there exists
ᾱ > 0 such that

|o(α)| < α|〈∆wt,s,gt,s〉|, ∀α ∈ (0, ᾱ).

Together with the condition 〈∆wt,s,gt,s〉 > 0, we can con-
clude that L(wt,s−α∆wt,s) < L(wt,s) for all α ∈ (0, ᾱ).
Therefore, parameter update ∆wt,s satisfying condition 2
is the descent direction.

Appendix C

Here, we give the proof of 〈∆wt,s,gt,s〉 ≥ 0 with
∆wlt,s = U l2(U l2)>glt,s, which is claimed in Sec 4.1 of the
manuscript. The proof mainly utilizes the properties of Kro-

1http://www.princeton.edu/˜aaa/Public/Teaching/
ORF363_COS323/F14/ORF363_COS323_F14_Lec8.pdf

necker product [1, Eqns. (2.10) and (2.13)].

〈∆wt,s,gt,s〉 =

L∑
l=1

〈U l2(U l2)>glt,s, g
l
t,s〉

=

L∑
l=1

vec(U l2(U l2)>glt,sI)>vec(glt,s)

=

L∑
l=1

vec((U l2)>glt,s)
>(I ⊗ (U l2)>)vec(glt,s)

=

L∑
l=1

vec((U l2)>glt,s)
>vec((U l2)>glt,s)

≥ 0, (5)

where vec(·) is the vectorization of ·, I is the identity matrix
and ⊗ is the Kronecker product.

Appendix D
We now discuss the difference between our algorithm

and OWM [2] in details as follows. (1) We provide novel
theoretical conditions for the stability and plasticity of net-
work based on feature covariance. (2) The null space of
ours is defined as the null space of feature covariance ma-
trix which is easy to be accumulated after each task (refer
to Q1 & Alg. 2). While the projection matrix in OWM is
Pl = Il − Al(A

>
l Al + βlIl)

−1A>l where Al consists of
all previous features of layer l. (3) With the coming of new
tasks, our covariance matrix is incrementally updated with-
out approximation error, while Pl of OWM is updated by
recursive least square, where the approximation error of ma-
trix inversion (because of the additionally introduced βlI)
will be accumulated. (4) Our approach relies on a hyper-
parameter a in line 14 of Alg. 2, for approximating the
null space of covariance, which can balance the stability
and plasticity as discussed in lines 572-579 and Fig. 5. It
is easy to set the hyperparameter (line 614 and Figs. 4, 5).
But we find that it is hard to tune the hyperparameter βl
in OWM for each layer to balance the approximation error
and computational stability. (5) Experimental comparison
with OWM on three benchmarks are shown in Tabs. 1-3.
The ACC of ours are 4.88%, 7.48% and 8.3% higher than
OWM with comparable BWT. Please refer to Q4 for com-
parison on ImageNet with deeper networks. We will clarify
these differences by extending the discussions in Sect. 2.
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