
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#656

CVPR
#656

CVPR 2021 Submission #656. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Training Networks in Null Space of Feature Covariance for Continual Learning
(Supplementary Material)

Anonymous CVPR 2021 submission

Paper ID 656

In this supplementary material, we first introduce addi-
tional notations, and give the proof of Lemma 1 in Ap-
pendix A. Then we discuss the reason why the parame-
ter update satisfying Condition 2 is the descent direction
in Appendix B. Finally, in Appendix C, we prove that
〈∆wt,s,gt,s〉 ≥ 0 claimed in Sec. 4.1 of the manuscript.

Notations
We first introduce additional notations here. When feed-

ing dataXp from task Tp (p ≤ t) to f with parameters wt,s,
the input feature and output feature at the l-th linear layer
are denoted as X l

p,t,s and Olp,t,s respectively, then

Olp,t,s = X l
p,t,sw

l
t,s, X

l+1
p,t,s = σl(O

l
p,t,s)

withX1
p,t,s = Xp. In addition, by denoting the learning rate

as α, we have

wlt,s = wlt,s−1 − α∆wlt,s−1, l = 1, . . . , L.

Appendix A
In this appendix, we show the proof of Lemma 1 in the

manuscript. Lemma 1 tells us that, when we train network
on task Tt, the network retains its training loss on data Xp

in the training process, if the network parameter update sat-
isfies Eqn. (1) at each training step. We first recall Lemma
1 as follows, then give the proof.

Lemma 1. Given the dataXp from task Tp, and the network
f with L linear layers is trained on task Tt (t > p). If
network parameter update ∆wlt,s lies in the null space of
X l
p,t−1, i.e.,

X l
p,t−1∆wlt,s = 0, (1)

at each training step s, for the l-th layer of f (l = 1, . . . , L),
we have X l

p,t = X l
p,t−1 and f(Xp, w̃t−1) = f(Xp, w̃t).

Proof. The proof is based on the recursive structure of net-
work and iterative training process. We first prove that
X l
p,t,1 = X l

p,t−1 and f(Xp,wt,1) = f(Xp, w̃t−1) hold

for s = 1, and then illustrate that X l
p,t,s = X l

p,t−1 and
f(Xp,wt,s) = f(Xp, w̃t−1) hold for each s > 1, which
suggests that Lemma 1 holds.

When s = 1, considering that we initialize parameters
wt,0 = w̃t−1, we have

X l
p,t,0 = X l

p,t−1, O
l
p,t,0 = Olp,t−1. (2)

Therefore, at the first layer (l = 1) where X1
p,t,1 =

X1
p,t,0 = X1

p,t−1 (all of them equal to Xp when l = 1),

O1
p,t,1 = X1

p,t,1w
1
t,1

= X1
p,t,0(w1

t,0 − α∆w1
t,0)

= X1
p,t,0w

1
t,0 − αX1

p,t−1∆w1
t,0

= X1
p,t,0w

1
t,0

= O1
p,t,0, (3)

where the fourth equation holds due to Eqn. (1). Further-
more, we have

X2
p,t,1 = σ1(O1

p,t,1) = σ1(O1
p,t,0) = X2

p,t,0 = X2
p,t−1,

(4)
i.e., the input feature X2

p,t,1 equals to X2
p,t−1 at the second

linear layer, based on which, we can recursively prove that

Olp,t,1 = Olp,t,0 = Olp,t−1

and
X l
p,t,1 = X l

p,t,0 = X l
p,t−1

for l = 3, . . . , L by replacing l = 1 with l = 2, . . . , L
in Eqns. (3) and (4), then we have f(Xp,wt,1) = f(Xp,
w̃t−1).

We now have proved that X l
p,t,s = X l

p,t−1, Olp,t,s =

Olp,t−1 (l = 1, . . . , L) and f(Xp,wt,s) = f(Xp, w̃t−1)
hold for s = 1. Considering the iterative training process,
we can prove that

X l
p,t,s = X l

p,t−1, O
l
p,t,s = Olp,t−1 (l = 1. . . . , L)

and
f(Xp,wt,s) = f(Xp, w̃t−1)

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#656

CVPR
#656

CVPR 2021 Submission #656. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

hold for s = 2, ..., by repeating the above process with s =
2,

Finally, we have X l
p,t = X l

p,t−1 and f(Xp, w̃t−1) =
f(Xp, w̃t), since Lemma 1 holds for each s ≥ 1.

Appendix B

We first recall the Condition 2 in the manuscript as fol-
lows, then prove that parameter update ∆wt,s satisfying
condition 2 is the descent direction, i.e., the training loss
after updating parameters using ∆wt,s will decrease.

Condition 2 (plasticity). Assume that the network f is
being trained on task Tt, and gt,s = {g1t,s, . . . , gLt,s}
denotes the parameter update generated by a gradient-
descent training algorithm for training f at training step
s. 〈∆wt,s,gt,s〉 > 0 should hold where 〈·, ·〉 represents
inner product.

We now discuss the reason why ∆wt,s is the descent
direction, if it satisfies condition 2. For clarity, we denote
the loss for training network f as L(w) which ignores the
data term with no effect. The discussion can also be found
in Lemma 2 of the lecture1.

By denoting the learning rate as α, and h(α) , L(wt,s−
α∆wt,s), according to Taylor’s theorem, we have

h(α) = h(0) +∇αh(0) + o(α),

i.e.,

L(wt,s − α∆wt,s) = L(wt,s)− α〈∆wt,s,gt,s〉+ o(α),

where |o(α)|α → 0 when α → 0. Therefore, there exists
ᾱ > 0 such that

|o(α)| < α|〈∆wt,s,gt,s〉|, ∀α ∈ (0, ᾱ).

Together with the condition 〈∆wt,s,gt,s〉 > 0, we can con-
clude that L(wt,s−α∆wt,s) < L(wt,s) for all α ∈ (0, ᾱ).
Therefore, parameter update ∆wt,s satisfying condition 2
is the descent direction.

Appendix C

Here, we give the proof of 〈∆wt,s,gt,s〉 ≥ 0 with
∆wlt,s = U l2(U l2)>glt,s, which is claimed in Sec 4.1 of the
manuscript. The proof mainly utilizes the properties of Kro-

1http://www.princeton.edu/˜aaa/Public/Teaching/
ORF363_COS323/F14/ORF363_COS323_F14_Lec8.pdf

necker product [1, Eqns. (2.10) and (2.13)].

〈∆wt,s,gt,s〉 =

L∑
l=1

〈U l2(U l2)>glt,s, g
l
t,s〉

=

L∑
l=1

vec(U l2(U l2)>glt,sI)>vec(glt,s)

=

L∑
l=1

vec((U l2)>glt,s)
>(I ⊗ (U l2)>)vec(glt,s)

=

L∑
l=1

vec((U l2)>glt,s)
>vec((U l2)>glt,s)

≥ 0, (5)

where vec(·) is the vectorization of ·, I is the identity matrix
and ⊗ is the Kronecker product.

Appendix D
We now discuss the difference between our algorithm

and OWM [2] in details as follows. (1) We provide novel
theoretical conditions for the stability and plasticity of net-
work based on feature covariance. (2) The null space of
ours is defined as the null space of feature covariance ma-
trix which is easy to be accumulated after each task (refer
to Q1 & Alg. 2). While the projection matrix in OWM is
Pl = Il − Al(A

>
l Al + βlIl)

−1A>l where Al consists of
all previous features of layer l. (3) With the coming of new
tasks, our covariance matrix is incrementally updated with-
out approximation error, while Pl of OWM is updated by
recursive least square, where the approximation error of ma-
trix inversion (because of the additionally introduced βlI)
will be accumulated. (4) Our approach relies on a hyper-
parameter a in line 14 of Alg. 2, for approximating the
null space of covariance, which can balance the stability
and plasticity as discussed in lines 572-579 and Fig. 5. It
is easy to set the hyperparameter (line 614 and Figs. 4, 5).
But we find that it is hard to tune the hyperparameter βl
in OWM for each layer to balance the approximation error
and computational stability. (5) Experimental comparison
with OWM on three benchmarks are shown in Tabs. 1-3.
The ACC of ours are 4.88%, 7.48% and 8.3% higher than
OWM with comparable BWT. Please refer to Q4 for com-
parison on ImageNet with deeper networks. We will clarify
these differences by extending the discussions in Sect. 2.

References
[1] Alexander Graham. Kronecker products and matrix calculus

with applications. Courier Dover Publications, 2018. 2
[2] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual

learning of context-dependent processing in neural networks.
Nature Machine Intelligence, 1(8):364–372, 2019. 2

2

