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In this supplementary material, we first introduce addi-
tional notations, and give the proof of Lemma [ in Ap-
pendix A. Then we discuss the reason why the parame-
ter update satisfying Condition 2 is the descent direction
in Appendix B. Finally, in Appendix C, we prove that
(Awy 5,8 s) > 0 claimed in Sec. 4.1 of the manuscript.

Notations

We first introduce additional notations here. When feed-
ing data X, from task 7, (p < t) to f with parameters w, g,
the input feature and output feature at the [-th linear layer
are denoted as X ]l) 1,5 and Oé,t, s Tespectively, then

Xl

p,t,s

Ol

+1 _ l
p,tys wts’ X, _Ul(op,ts)

with X ; ts = Xp- Inaddition, by denoting the learning rate
as o, we have

[ |
Wy s = Wy

1 faAwi)S_l,l =1,...,L.

s8—

Appendix A

In this appendix, we show the proof of Lemma 1 in the
manuscript. Lemma 1 tells us that, when we train network
on task 7, the network retains its training loss on data X,
in the training process, if the network parameter update sat-
isfies Eqn. (1) at each training step. We first recall Lemma
1 as follows, then give the proof.

Lemma 1. Given the data X,, from task T, and the network
f with L linear layers is trained on task T; (t > p). If
network parameter update Awé,s lies in the null space of
Xl

b1 1€

Awg =0, (1)

pit—

at each training step s, forthe l-thlayerof f (I =1,...,L),
we have X!, = X| | and f(Xp, Wi_1) = f(Xp, Wy).

Proof. The proof is based on the recursive structure of net-
work and iterative training process. We first prove that
X;l;,m = X!, ;and f(X,,wi1) = f(Xp,W;_1) hold

P,

for s = 1, and then illustrate that X!, = = X!, , and
f(Xp,wes) = f(X,,W_1) hold for each s > 1, which
suggests that Lemma 1 holds.

When s = 1, considering that we initialize parameters

Wi o = W1, we have
Xt =X O! =0! 2)
p,t,0 p,t—1> p,t,0 p,t—1-

Therefore, at the first layer (I = 1) where X, =
X;,w X; +_1 (all of them equal to X}, when ! = 1),
01 1= X;;,t,lwtl,l
= Xl 't O(wth - aAwtl,O)

1 1
=X, t,owto aXp,t—lAwt,O

= Xp7t oW t,o
Op £,00 3

where the fourth equation holds due to Eqn. (1). Further-
more, we have
Xﬁ,m = 01(0; t, 1) = Ul(Op,t,o) XZ,t,o = Xﬁ,t_u
“)
i.e., the input feature ngt’l equals to Xf;,tq at the second
linear layer, based on which, we can recursively prove that

Optl OptO Opt 1
and
X;l)tlepto X;l)t 1
for! = 3,...,Lbyreplacing! = 1 with! = 2,...,L

in Eqns. (3) and (4), then we have f(X,,w;1) = f(X

We1).
We now have proved that X}, = = X!, . O, =
Oé’t71 (l = 1, .. ,L) and f(vawt,s) = f(Xp,Wtfl)

hold for s = 1. Considering the iterative training process,
we can prove that
Xl

p,t,s

_ l l
Xp,tfl’ o

p,t,s

=0, (I=1....,L)

and
f(Xp7Wt,5) = f(XpaVNthl)
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hold for s = 2, ..., by repeating the above process with s =
2

Finally, we have X, = X!, | and f(X,, Ww;_1) =
f(Xp, W), since Lemma 1 holds for each s > 1. O

Appendix B

We first recall the Condition 2 in the manuscript as fol-
lows, then prove that parameter update Aw, , satisfying
condition 2 is the descent direction, i.e., the training loss
after updating parameters using Aw; s will decrease.

Condition 2 (plasticity). Assume that the network f is
being trained on task T, and gs = {gi., ..., 9}
denotes the parameter update generated by a gradient-
descent training algorithm for training f at training step
s. (Awy s, 8ts) > 0 should hold where (-,-) represents
inner product.

We now discuss the reason why Aw, , is the descent
direction, if it satisfies condition 2. For clarity, we denote
the loss for training network f as £(w) which ignores the
data term with no effect. The discussion can also be found
in Lemma 2 of the lecture'.

By denoting the learning rate as o, and h(a) £ L(wy s—
aAw, ), according to Taylor’s theorem, we have

h(c) = h(0) + Vo h(0) + o(a),

L(wys — aAwy o) = L(Wy5) — (AW, 5, 81 5) + 0(),

where ‘O(a—“)l — 0 when o« — 0. Therefore, there exists

& > 0 such that
lo(@)| < a|(Awy s, 81,5)|, Ya € (0,a).

Together with the condition (Aw, 4, g; s) > 0, we can con-
clude that L(w; s — aAw; ;) < L(w, ) forall a € (0, @).
Therefore, parameter update Awy s satisfying condition 2
is the descent direction.

Appendix C
Here, we give the proof of (Aw, s, g ) > 0 with

Aw} . = U§(US) T g} ,, which is claimed in Sec 4.1 of the
manuscript. The proof mainly utilizes the properties of Kro-

http://www.princeton.edu/~aaa/Public/Teaching/
ORF363_C0S323/F14/0RF363_C0S323_F14_Lec8.pdf

necker product [1, Eqns. (2.10) and (2.13)].

M=

<Awt,svgt,s> = <U£(Ué)—rgi,s’gllf,s>

=1
L

= ZVeC(Ué(Ué)Tgi,sI)TveC(grlf,s)
=1
L

= " vee((U3) g1 )T (I @ (US) T vee(gh ,)
=1
L

=" vee((U}) Tgh.0) Tvec(U) g} )
1=1

>0, )

where vec(+) is the vectorization of -, I is the identity matrix
and ® is the Kronecker product.

Appendix D

We now discuss the difference between our algorithm
and OWM [2] in details as follows. (1) We provide novel
theoretical conditions for the stability and plasticity of net-
work based on feature covariance. (2) The null space of
ours is defined as the null space of feature covariance ma-
trix which is easy to be accumulated after each task (refer
to Q1 & Alg. 2). While the projection matrix in OWM is
P, =1 — A (A A, + BI,) YA where A; consists of
all previous features of layer . (3) With the coming of new
tasks, our covariance matrix is incrementally updated with-
out approximation error, while P; of OWM is updated by
recursive least square, where the approximation error of ma-
trix inversion (because of the additionally introduced ;1)
will be accumulated. (4) Our approach relies on a hyper-
parameter a in line 14 of Alg. 2, for approximating the
null space of covariance, which can balance the stability
and plasticity as discussed in lines 572-579 and Fig. 5. It
is easy to set the hyperparameter (line 614 and Figs. 4, 5).
But we find that it is hard to tune the hyperparameter (;
in OWM for each layer to balance the approximation error
and computational stability. (5) Experimental comparison
with OWM on three benchmarks are shown in Tabs. 1-3.
The ACC of ours are 4.88%, 7.48% and 8.3% higher than
OWM with comparable BWT. Please refer to Q4 for com-
parison on ImageNet with deeper networks. We will clarify
these differences by extending the discussions in Sect. 2.
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