

000
001
002
003
004
005
006
007
008
009
010
011
012
013

Training Networks in Null Space of Feature Covariance for Continual Learning (Supplementary Material)

Anonymous CVPR 2021 submission

Paper ID 656

In this supplementary material, we first introduce additional notations, and give the proof of Lemma 1 in Appendix A. Then we discuss the reason why the parameter update satisfying Condition 2 is the descent direction in Appendix B. Finally, in Appendix C, we prove that $\langle \Delta \mathbf{w}_{t,s}, \mathbf{g}_{t,s} \rangle \geq 0$ claimed in Sec. 4.1 of the manuscript.

Notations

We first introduce additional notations here. When feeding data X_p from task \mathcal{T}_p ($p \leq t$) to f with parameters $\mathbf{w}_{t,s}$, the input feature and output feature at the l -th linear layer are denoted as $X_{p,t,s}^l$ and $O_{p,t,s}^l$ respectively, then

$$O_{p,t,s}^l = X_{p,t,s}^l w_{t,s}^l, \quad X_{p,t,s}^{l+1} = \sigma_l(O_{p,t,s}^l)$$

with $X_{p,t,s}^1 = X_p$. In addition, by denoting the learning rate as α , we have

$$w_{t,s}^l = w_{t,s-1}^l - \alpha \Delta w_{t,s-1}^l, \quad l = 1, \dots, L.$$

Appendix A

In this appendix, we show the proof of Lemma 1 in the manuscript. Lemma 1 tells us that, when we train network on task \mathcal{T}_t , the network retains its training loss on data X_p in the training process, if the network parameter update satisfies Eqn. (1) at each training step. We first recall Lemma 1 as follows, then give the proof.

Lemma 1. *Given the data X_p from task \mathcal{T}_p , and the network f with L linear layers is trained on task \mathcal{T}_t ($t > p$). If network parameter update $\Delta w_{t,s}^l$ lies in the null space of $X_{p,t-1}^l$, i.e.,*

$$X_{p,t-1}^l \Delta w_{t,s}^l = 0, \quad (1)$$

at each training step s , for the l -th layer of f ($l = 1, \dots, L$), we have $X_{p,t}^l = X_{p,t-1}^l$ and $f(X_p, \tilde{\mathbf{w}}_{t-1}) = f(X_p, \tilde{\mathbf{w}}_t)$.

Proof. The proof is based on the recursive structure of network and iterative training process. We first prove that $X_{p,t,1}^l = X_{p,t-1}^l$ and $f(X_p, \mathbf{w}_{t,1}) = f(X_p, \tilde{\mathbf{w}}_{t-1})$ hold

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

for $s = 1$, and then illustrate that $X_{p,t,s}^l = X_{p,t-1}^l$ and $f(X_p, \mathbf{w}_{t,s}) = f(X_p, \tilde{\mathbf{w}}_{t-1})$ hold for each $s > 1$, which suggests that Lemma 1 holds.

When $s = 1$, considering that we initialize parameters $\mathbf{w}_{t,0} = \tilde{\mathbf{w}}_{t-1}$, we have

$$X_{p,t,0}^l = X_{p,t-1}^l, \quad O_{p,t,0}^l = O_{p,t-1}^l. \quad (2)$$

Therefore, at the first layer ($l = 1$) where $X_{p,t,1}^1 = X_{p,t,0}^1 = X_{p,t-1}^1$ (all of them equal to X_p when $l = 1$),

$$\begin{aligned} O_{p,t,1}^1 &= X_{p,t,1}^1 w_{t,1}^1 \\ &= X_{p,t,0}^1 (w_{t,0}^1 - \alpha \Delta w_{t,0}^1) \\ &= X_{p,t,0}^1 w_{t,0}^1 - \alpha X_{p,t-1}^1 \Delta w_{t,0}^1 \\ &= X_{p,t,0}^1 w_{t,0}^1 \\ &= O_{p,t,0}^1, \end{aligned} \quad (3)$$

where the fourth equation holds due to Eqn. (1). Furthermore, we have

$$X_{p,t,1}^2 = \sigma_1(O_{p,t,1}^1) = \sigma_1(O_{p,t,0}^1) = X_{p,t,0}^2 = X_{p,t-1}^2, \quad (4)$$

i.e., the input feature $X_{p,t,1}^2$ equals to $X_{p,t-1}^2$ at the second linear layer, based on which, we can recursively prove that

$$O_{p,t,1}^l = O_{p,t,0}^l = O_{p,t-1}^l$$

and

$$X_{p,t,1}^l = X_{p,t,0}^l = X_{p,t-1}^l$$

for $l = 3, \dots, L$ by replacing $l = 1$ with $l = 2, \dots, L$ in Eqns. (3) and (4), then we have $f(X_p, \mathbf{w}_{t,1}) = f(X_p, \tilde{\mathbf{w}}_{t-1})$.

We now have proved that $X_{p,t,s}^l = X_{p,t-1}^l$, $O_{p,t,s}^l = O_{p,t-1}^l$ ($l = 1, \dots, L$) and $f(X_p, \mathbf{w}_{t,s}) = f(X_p, \tilde{\mathbf{w}}_{t-1})$ hold for $s = 1$. Considering the iterative training process, we can prove that

$$X_{p,t,s}^l = X_{p,t-1}^l, \quad O_{p,t,s}^l = O_{p,t-1}^l \quad (l = 1, \dots, L)$$

and

$$f(X_p, \mathbf{w}_{t,s}) = f(X_p, \tilde{\mathbf{w}}_{t-1})$$

108 hold for $s = 2, \dots$, by repeating the above process with $s = 162$
109 $2, \dots$ 163

110 Finally, we have $X_{p,t}^l = X_{p,t-1}^l$ and $f(X_p, \tilde{\mathbf{w}}_{t-1}) = 164$
111 $f(X_p, \tilde{\mathbf{w}}_t)$, since Lemma 1 holds for each $s \geq 1$. 165

113 Appendix B 166

114 We first recall the Condition 2 in the manuscript as 167
115 follows, then prove that parameter update $\Delta \mathbf{w}_{t,s}$ satisfying 168
116 condition 2 is the descent direction, i.e., the training loss 169
117 after updating parameters using $\Delta \mathbf{w}_{t,s}$ will decrease. 170

118 **Condition 2** (plasticity). *Assume that the network f is 171
119 being trained on task \mathcal{T}_t , and $\mathbf{g}_{t,s} = \{g_{t,s}^1, \dots, g_{t,s}^L\}$ 172
120 denotes the parameter update generated by a gradient- 173
121 descent training algorithm for training f at training step 174
122 s . $\langle \Delta \mathbf{w}_{t,s}, \mathbf{g}_{t,s} \rangle > 0$ should hold where $\langle \cdot, \cdot \rangle$ 175
123 represents inner product.*

124 We now discuss the reason why $\Delta \mathbf{w}_{t,s}$ is the descent 176
125 direction, if it satisfies condition 2. For clarity, we denote 177
126 the loss for training network f as $\mathcal{L}(\mathbf{w})$ which ignores the 178
127 data term with no effect. The discussion can also be found 179
128 in Lemma 2 of the lecture¹. 180

129 By denoting the learning rate as α , and $h(\alpha) \triangleq \mathcal{L}(\mathbf{w}_{t,s} - 181$
130 $\alpha \Delta \mathbf{w}_{t,s})$, according to Taylor's theorem, we have 182

$$131 h(\alpha) = h(0) + \nabla_\alpha h(0) + o(\alpha),$$

132 i.e.,

$$133 \mathcal{L}(\mathbf{w}_{t,s} - \alpha \Delta \mathbf{w}_{t,s}) = \mathcal{L}(\mathbf{w}_{t,s}) - \alpha \langle \Delta \mathbf{w}_{t,s}, \mathbf{g}_{t,s} \rangle + o(\alpha),$$

134 where $\frac{|o(\alpha)|}{\alpha} \rightarrow 0$ when $\alpha \rightarrow 0$. Therefore, there exists 183
135 $\bar{\alpha} > 0$ such that 184

$$136 |o(\alpha)| < \alpha |\langle \Delta \mathbf{w}_{t,s}, \mathbf{g}_{t,s} \rangle|, \quad \forall \alpha \in (0, \bar{\alpha}).$$

137 Together with the condition $\langle \Delta \mathbf{w}_{t,s}, \mathbf{g}_{t,s} \rangle > 0$, we can 185
138 conclude that $\mathcal{L}(\mathbf{w}_{t,s} - \alpha \Delta \mathbf{w}_{t,s}) < \mathcal{L}(\mathbf{w}_{t,s})$ for all $\alpha \in (0, \bar{\alpha})$. 186
139 Therefore, parameter update $\Delta \mathbf{w}_{t,s}$ satisfying condition 2 187
140 is the descent direction. 188

141 Appendix C 189

142 Here, we give the proof of $\langle \Delta \mathbf{w}_{t,s}, \mathbf{g}_{t,s} \rangle \geq 0$ with 190
143 $\Delta \mathbf{w}_{t,s}^l = U_2^l (U_2^l)^\top g_{t,s}^l$, which is claimed in Sec 4.1 of the 191
144 manuscript. The proof mainly utilizes the properties of Kro- 192
145 necker product [1, Eqns. (2.10) and (2.13)]. 193

146 ¹[http://www.princeton.edu/~aaa/Public/Teaching/195
148 ORF363_COS323/F14/ORF363_COS323_F14_Lec8.pdf](http://www.princeton.edu/~aaa/Public/Teaching/194
147 ORF363_COS323/F14/ORF363_COS323_F14_Lec8.pdf)

149 necker product [1, Eqns. (2.10) and (2.13)]. 162

$$150 \langle \Delta \mathbf{w}_{t,s}, \mathbf{g}_{t,s} \rangle = \sum_{l=1}^L \langle U_2^l (U_2^l)^\top g_{t,s}^l, g_{t,s}^l \rangle 163$$

$$151 = \sum_{l=1}^L \text{vec}(U_2^l (U_2^l)^\top g_{t,s}^l I)^\top \text{vec}(g_{t,s}^l) 164$$

$$152 = \sum_{l=1}^L \text{vec}((U_2^l)^\top g_{t,s}^l)^\top (I \otimes (U_2^l)^\top) \text{vec}(g_{t,s}^l) 165$$

$$153 = \sum_{l=1}^L \text{vec}((U_2^l)^\top g_{t,s}^l)^\top \text{vec}((U_2^l)^\top g_{t,s}^l) 166$$

$$154 \geq 0, \quad (5) \quad 167$$

155 where $\text{vec}(\cdot)$ is the vectorization of \cdot , I is the identity matrix 168
156 and \otimes is the Kronecker product. 169

157 Appendix D 170

158 We now discuss the difference between our algorithm 171
159 and OWM [2] in details as follows. (1) We provide novel 172
160 theoretical conditions for the stability and plasticity of net- 173
161 work based on feature covariance. (2) The null space of 174
162 ours is defined as the null space of feature covariance ma- 175
163trix which is easy to be accumulated after each task (refer 176
164 to Q1 & Alg. 2). While the projection matrix in OWM is 177
165 $\mathbf{P}_l = \mathbf{I}_l - \mathbf{A}_l (\mathbf{A}_l^\top \mathbf{A}_l + \beta_l \mathbf{I}_l)^{-1} \mathbf{A}_l^\top$ where \mathbf{A}_l 178
166 consists of all previous features of layer l . (3) With the coming of new 179
167 tasks, our covariance matrix is incrementally updated with- 180
168 out approximation error, while \mathbf{P}_l of OWM is updated by 181
169 recursive least square, where the approximation error of ma- 182
170trix inversion (because of the additionally introduced $\beta_l \mathbf{I}_l$) 183
171 will be accumulated. (4) Our approach relies on a hyper- 184
172 parameter a in line 14 of Alg. 2, for approximating the 185
173 null space of covariance, which can balance the stability 186
174 and plasticity as discussed in lines 572-579 and Fig. 5. It 187
175 is easy to set the hyperparameter (line 614 and Figs. 4, 5). 188
176 But we find that it is hard to tune the hyperparameter β_l 189
177 in OWM for each layer to balance the approximation error 190
178 and computational stability. (5) Experimental comparison 191
179 with OWM on three benchmarks are shown in Tabs. 1-3. 192
180 The ACC of ours are 4.88%, 7.48% and 8.3% higher than 193
181 OWM with comparable BWT. Please refer to Q4 for 194
182 comparison on ImageNet with deeper networks. We will clarify 195
183 these differences by extending the discussions in Sect. 2. 196

184 References 207

- [1] Alexander Graham. *Kronecker products and matrix calculus with applications*. Courier Dover Publications, 2018. 210
- [2] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual 211 learning of context-dependent processing in neural networks. 212 *Nature Machine Intelligence*, 1(8):364–372, 2019. 213