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Section I presents more analyses on our network. Sec-
tion II includes additional quantitative and qualitative re-
sults achieved on different degradations.

I. Additional Analyses

I.I. Degradation-Aware Convolutions

Our degradation-aware convolution (DA convolution)
exploits degradation information by dynamically generating
convolutional kernels and channel-wise modulation coeffi-
cients from the input degradation representation. We con-
duct experiments to investigate these two key components.
Convolutional Kernels. We first visualize the convolu-
tional kernels learned for degradations with different kernel
widths in Fig. I. It can be observed that the convolutional
kernels for σ = 0.2/3.4 have different patterns. This means
that our DA convolution can adapt its convolutional kernels
based on the degradation representation.
Channel-Wise Modulation Coefficients. Figure II further
visualizes the modulation coefficients learned for degrada-
tions with different kernel widths. As we can see, our DA
convolution learns to assign different channel-wise signifi-
cance to the features according to the degradation represen-
tation.

By dynamically predicting convolutional kernels based
on the degradation representations, our DA convolution
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Figure I. Visualization of convolutional kernels learned for differ-
ent kernel widths.
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Figure II. Visualization of channel-wise modulation coefficients
learned for different kernel widths.

has larger network capacity to handle various degradations.
Moreover, learning channel-wise modulation coefficients
enables our DA convolution to adapt the features accord-
ing to the degradation information. Overall, DA convolu-
tion facilitates our DASR to better exploit degradation in-
formation for flexible adaption to different degradations, as
demonstrated in Table 1.

I.II. Image Contents

Intuitively, the accuracy of degradation information pro-
vided by degradation representations is related to the image
contents. Specifically, degradation representations learned
from patches with rich edges and textures are expected to be
better than those learned from patches with flat background.
We conduct experiments to investigate the degradation rep-
resentations learned from patches with different image con-
tents. Given an LR image I , a patch was randomly cropped
to extract degradation representation to super-resolve I .
The relationship between the average gradient of the patch
and the PSNR value is presented in Table I. With richer tex-
tures in the patch (i.e., higher gradient), learned degrada-
tion representations provide more accurate degradation in-



Table I. PSNR results achieved by our DASR using degradation representations extracted from different patches.
Gradient 8.12 8.75 9.23 9.55 10.14 10.28 10.88 11.58 12.21 12.37 Full Image
PSNR 25.30 25.33 25.39 25.43 25.50 25.52 25.58 25.58 25.59 25.59 25.52

Table III. PSNR results achieved on noise-free degradations with isotropic Gaussian kernels for×4 SR. Running time is averaged on Set14.
Method Time Set5 Set14 B100 Urban100

Kernel Width 1.2 2.4 3.6 1.2 2.4 3.6 1.2 2.4 3.6 1.2 2.4 3.6
RCAN [7] + Correction Filter [2] + Predictor [1] 320ms 30.41 28.26 25.75 27.25 26.09 24.17 26.74 25.90 24.09 24.50 23.06 21.47
MZSR [5] + Predictor [1] 75ms 30.06 30.45 27.26 27.34 27.47 25.27 26.47 26.72 25.07 24.24 24.44 22.50
USRnet [6] + Predictor [1] 105ms 30.59 29.30 28.14 27.70 26.81 25.96 26.82 26.30 25.72 24.84 23.89 23.14
DAN [4] 190ms 32.15 31.86 30.44 27.48 27.26 26.51 26.69 26.35 25.98 26.18 25.29 24.82
DASR (Ours) 70ms 31.35 31.60 30.45 27.94 28.17 27.50 27.12 27.37 26.89 25.33 25.40 25.69

formation such that higher PSNR values are achieved by our
DASR.

I.III. Unseen Degradations

We conduct experiments to test the generalization of our
DASR on unseen degradations. As shown in Fig. III, our
DASR achieves promising generalization and outperforms
IKC on both seen and unseen degradations.
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Figure III. Visual comparison on unseen degradations.

I.IV. Lightweight DASR

To compare our DASR to SRMDNF at a similar level of
model size, we developed a lightweight version of DASR
with fewer DA blocks and channels. As shown in Table II,
our DASR-lite outperforms SRMDNF on different kernel
widths with comparable model complexity.

Table II. PSNR results achieved on Set14 for ×4 SR.

Params. Time Kernel Width σ
0.2 1.0 1.8 2.6 3.4

SRMDNF+Predictor 1.9M 5ms 26.13 26.15 26.19 26.20 26.18
DASR-lite 2.1M 8ms 27.71 27.75 27.51 26.81 26.38

II. Additional Results
II.I. Degradations with s-Fold Downsampler

We re-trained our DASR on degradations with s-fold
downsampler and compare its performance with correction
filter [2], MZSR [5], USRnet [6] and DAN [4]. Since cor-
rection filter, MZSR and USRnet are non-blind SR meth-
ods, we used predictor sub-network in IKC [1] to estimate

degradations. Quantitative results are presented in Table III
with visual results being provided in Fig. IV.
Quantitative Results. It can be observed from Table III
that our DASR outperforms other methods for most sce-
narios. For example, our network produces notable perfor-
mance improvements in terms of PSNR on B100 as com-
pared to DAN (27.13/27.37/26.89 vs. 26.69/26.35/25.98).
Since correction filter, MZSR and USRnet are sensitive to
degradation estimation error, these methods suffer limited
performance under blind settings. By iteratively estimating
the degradation with the help of previous SR result, DAN
produces improved performance. Compared to other meth-
ods, DASR benefits from our degradation representation
learning scheme and achieves superior performance with
better efficiency.
Qualitative Results. From Fig. IV we can see that our
DASR achieves better visual quality as compared to other
methods. Specifically, our network produces finer and
clearer details while other methods suffer notable blurring
artifacts, such as the text “ANTIQUES” in the third image.

II.II. Degradations with Bicubic Downsampler

We provide additional visual results achieved on noise-
free and general degradations with bicubic downsampler in
Figs. V and VI. We can see that our DASR consistently pro-
duces results with better perceptual quality and fewer arti-
facts.

II.III. Real Degradations

We further test our DASR on real images [3] with un-
known degradations. Visual results are shown in Fig. VII.
It can be observed that DASR achieves much better percep-
tual quality and recovers clearer details while other methods
suffer notable blurring artifacts.
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Figure VII. Visual comparison on real images.
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Figure IV. Visual comparison achieved on degradations with s-fold downsampler. The blur kernels are illustrated with red boxes.



LR Image GT Bicubic RCAN

SRMDNF IKC DASR (Ours)

LR Image GT Bicubic RCAN

SRMDNF IKC DASR (Ours)

LR Image GT Bicubic RCAN

SRMDNF IKC DASR (Ours)

Figure V. Visual comparison achieved on noise-free degradations. The blur kernels are illustrated with red boxes.
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Figure VI. Visual comparison achieved on general degradations. Noise levels are set to 0, 5 and 10 for these three images, respectively.


