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We provide further details on Kitchen-HC construction,
implementation details, and various choices and experiments
we have explored to validate our approach.

1. Kitchen-HC Dataset Construction

The original multi-view RGB-D kitchen dataset [7] is
comprised of densely sampled views of several kitchen
counter-top scenes with annotations in both 2D and 3D. The
viewpoints of the scenes are densely sampled and objects
in the scenes are annotated with bounding boxes and in the
3D point cloud. Kitchen-HC is constructed from multi-view
RGB-D dataset Kitchen by extracting objects in their 2D
bounding boxes. The customized Kitchen-HC dataset has
11 categories with highly correlated samples (from differ-
ent viewing angles) and 20.8K / 4K / 14.4K instances for
training / validation / testing. Fig. A.1 shows sample im-
ages in the original RGB-D Kitchen dataset from which our
Kitchen-HC data are constructed (See samples used in Fig.
1).

Figure A.1: Samples of multi-view RGB-D dataset Kitchen
[7]. Instances of the same category captured from differ-
ent perspectives are highly correlated. The high-correlation
dataset Kitchen-HC is constructed from Kitchen by extract-
ing objects in their bounding boxes.

2. Implementation Details
We use SGD as our optimizer, with weight decay 0.0001

and momentum 0.9. We follow MoCo and NPID [17, 9]
and use only standard data augmentation methods for exper-
iments on NPID+CLD and MoCo+CLD: random cropping,
resizing, horizontal flipping, color and grayscale transforma-
tion, unless otherwise noticed.

1. ImageNet-{100 [15], ILSVRC-2012 [5] , Long-tail
[12]}. For ILSVRC-2012 and ImageNet-LT, we use
mini-batch size 256, initial learning rate 0.03, on 8 RTX
2080Ti GPUs. For ImageNet-100, we use batch size
512 and a larger initial learning rate of 0.8 on 8 GPUs,
and apply the same setting to baselines and our methods.
Training images are randomly cropped and resized to
224× 224. For experiments on MoCov2+CLD with an
MLP projection head, we extend the original augmen-
tation in [9] by including the blur augmentation and
apply cosine learning rate scheduler to further improve
the performance on recognition as in [2]. BYOL+CLD
is implemented based on OpenSelfSup [21] benchmark.
For experiments on InfoMin+CLD and BYOL+CLD,
we follow the same training recipe with InfoMin and
BYOL [16, 8] for fair comparisons.

2. CIFAR-{10, 100, 10-LT, 100-LT}, Kitchen-HC. As
[17], we use mini-batch size 256, initial learning rate
0.03 on 1 GPU for CIFAR [11] and Kitchen-HC. The
number of epochs is 200 for CIFAR and 80 for Kitchen-
HC. Training images are randomly cropped and resized
to 32× 32.

3. STL-10 [3]. Following [18], we use mini-batch size
256, initial learning rate 0.03, on 2 GPUs. Base-
line models and baselines with CLD are trained on
”train+unlabelled” split (105k samples), and tested on
”test” split (5k samples). Training images are randomly
cropped and resized to 96× 96.

4. Transfer learning on object detection. We use Faster
R-CNN with a backbone of R50-C4, with tuned syn-



chronized batch normalization layers [13] as the detec-
tor. As in [9], the detector is fine-tuned for 24k itera-
tions for the experiment on Pascal VOC trainval07+12
and 9k iterations for the experiment on Pascal VOC
trainval07. The image scale is [480, 800] pixels dur-
ing training and 800 at inference. NPID+CLD and
MoCo+CLD use the same hyper-parameters as in
MoCo [9]. The VOC-style evaluation metric [6] AP50

at IoU threshold is 50% and COCO-style evaluation
metric AP are used.

5. Semi-supervised learning. To make fair comparisons
with baseline methods, we use OpenSelfSup [21] bench-
mark to implement baseline results and ours. We follow
[20] and fine-tune the pre-trained model on two subsets
for semi-supervised learning experiments, i.e. 1% and
10% of the labeled ImageNet-1k training datasets in a
class-balanced way. The necks or heads are removed
and only the backbone CNN is evaluated by appending
a linear classification head.

We apply greedy search on a list of hyper-parameter
settings with the base learning rate from {0.001, 0.01,
0.1} and the learning rate multiplier for the head from
{1, 10, 100}. We choose the optimal hyper-parameter
setting for each method. Empirically, all baselines and
their alternatives with CLD obtain the best performance
with a learning rate of 0.01 and a learning rate mul-
tiplier for the head of 100. We train the network for
20 epochs using SGD with weight decay 0.0001 and a
momentum of 0.9, and a mini-batch of 256 on 4 GPUs.
The learning rate is decayed by 5 times at epoch 12 and
16 respectively.

3. Which Clustering Method to Use?

We have tried two popular clustering methods: k-Means
clustering and spectral clustering, both implemented in Py-
torch for fast performance on GPUs.

k-Means clustering [1, 10] aims to partition n represen-
tations into k groups, each representation belongs to the
cluster with the nearest cluster centroid, serving as a pro-
totype of the cluster. We use spherical k-Means clustering
which minimizes:

∑
(1 − cos(fi, uc(i))) over all assign-

ments c of objects i to cluster ids c(i) ∈ {1, ..., k} and over
all prototypes u1, ..., uk in the same feature space as the
feature vector fi representing the objects. We use binary
cluster assignment, where the cluster membership mij = 1
if item i is assigned to cluster j and 0 otherwise. The fol-
lowing k-means objective can be solved using the standard

group spectral k-Means
10 77.1% 78.9%
64 74.5% 76.3%

128 72.6% 73.4%
256 70.5% 70.8%

Table A.1: Top-1 kNN accuracies on Kitchen-HC under
different group numbers for different clustering methods.

NPID+CLD Subspace Cross-augmentation CIFAR-10 CIFAR-100
7 80.8% 51.6%
3 share 82.7% 53.3%
3 separate 84.2% 55.0%
3 separate 3 86.5% 57.5%

Table A.2: Ablation study on various components of our
method, i.e. adding the cross-level discrimination, projecting
the representation to two different spaces, and using cross-
augmentation comparison between xi and x′i. kNN top-1
accuracy is reported here.

Expectation-Maximization algorithm [4]:

Φ(M, {u1, ..., uC}) =
∑
i,j

mij(1− cos(fi, uc(i)))

=
∑
i,j

mij(1−
fi · uc(i)

||fi|| · ||uc(i)||
).

(1)

Spectral clustering [14, 19] treats data points as nodes of a
graph.

1. For feature fi ∈ Rd×1 of N samples, we build a
weighted gragh G = (V,E), with weight measuring
pairwise feature similarity: wi,j =

fi·fj
||fi||·||fj || .

2. Let D be theN×N diagonal degree matrix with dij =∑n
j=1 wij and L be the normalized Laplacian matrix:

L = D−
1
2 (D−W)D−

1
2 (2)

3. We compute the k largest eigenvalues of L and use the
corresponding k row-normalized eigenvectors Ei as the
globalized new feature [14, 19]. We apply EM to find
the cluster centroids.

Table A.1 shows that k-means clustering achieves better
performance on Kitchen-HC and outperforms optimal spec-
tral clustering result by 1.8% when the group number is 10.
However, as the group number increases, the performance
difference becomes negligible.

4. Are Separate Feature and Group Branches
Necessary?

Intuitively, instance grouping and instance discrimination
are at odds with each other. Our solution is to formulate



the feature learning on a common representation, forking
off two branches where we can impose grouping and dis-
crimination separately. Table A.2 shows that projecting the
representation to different spaces and jointly optimize the
two losses increase top-1 kNN accuracy by 1.5% and 1.8%
on CIFAR-10 and CIFAR-100 respectively.

5. How Effective Is Cross-Augmentation Com-
parisons?

Instance-level discrimination presumes each instance is
its own class and any other instance is a negative. The
groups needed for any group-level discrimination have to be
built upon local clustering results extracted from the current
feature in training, which are fluid and unreliable.

Our solution is to seek the most certainty among all the
uncertainties: We presume stable grouping between one
instance and its augmented version, and our cross-level dis-
crimination compares the former with the groups derived
from the latter. We roll the three processes: instance group-
ing, invariant mapping, and instance-group discrimination
all into one CLD loss.

Table A.2 shows that our cross-augmentation comparison
increases the top-1 accuracy by more than 2% on recogni-
tion task. It demands the feature not only to be invariant
to data augmentation, but also to be respectful of natural
grouping between individual instances, often aligning better
with downstream semantic classification.

6. How Sensitive Are Hyper-parameters
Weight λ and Temperature T?
λ controls the relative importance of CLD with respect to

instance-level discrimination, and helps strike a balance be-
tween the caveates of noisy initial grouping and the benefits
it brings with coarse-grained repulsion between instances
and local groups. Table A.3 shows that, at a fixed group num-
ber, λ = 0.25 achieves optimal performance, and a larger
λ generally leads to worse performance and even decreases
top-1 accuracy by 3.1% at λ = 3.

NPID+CLD MoCo+CLD
top-1 (%) top-5 (%) top-1 (%) top-5 (%)

λ = 0 75.3 92.4 77.6 93.8
λ = 0.1 78.8 94.4 80.3 95.0
λ = 0.25 79.7 95.1 81.7 95.7
λ = 0.50 78.9 94.4 80.5 95.2
λ = 1.0 78.8 94.5 80.1 94.8
λ = 3.0 76.6 93.2 78.4 94.1

Table A.3: Top-1 and top-5 linear classification accuracies
(%) on ImageNet-100 with different λ’s. The backbone
network is ResNet-50.
T is known to critical for discrminative learning and can

be sometimes tricky to choose. Table A.4 shows that the

best performance is achieved at T = 0.2 for both CIFAR
and ImageNet-100. With local grouping built into our CLD
method, we find the sensitivity of T is greatly reduced.

T (TI = TG) 0.07 0.1 0.2 0.3 0.4 0.5
CIFAR-100 57.9% 57.8% 58.1% 58.1% 57.6% 57.2%
ImageNet-100 79.3% 79.6% 81.7% 80.7% 79.4% 79.0%

Table A.4: Linear (ImageNet-100) and kNN (CIFAR-100)
evaluations for models trained with different choices of tem-
perature T , TI = TG for simplicity.

7. Is A Larger Memory Bank Always Better for
Discriminative Learning?

A larger memory bank includes more negatives and is
known to deliver a better discriminator. However, we cannot
simply adjust the memory bank size according to NMI or
retrieval accuracy in order to deliver the best performance
on downstream classification.

Fig. A.2 compares NMI and retrieval accuracies under
different negative prototype numbers. If there are too many
negatives, the model would focus on repelling negative in-
stances, ignoring the commonality between instances; if
there are too few negatives, the model would be subject
to random fluctuations from batch to batch, affecting opti-
mization and convergence. However, neither the number of
negatives (i.e. infoNCE-k) to obtain the best retrieval accu-
racy nor the number of negatives to achieve the best NMI
score can deliver the best downstream classification task. To
deliver optimal performance at downstream classification
task, there is a trade-off between local mutual information
(evaluated by retrieval task) and global mutual information
(evaluated by Normalized Mutual Information).

8. Sample Retrievals
Fig. A.3 shows our near-perfect sample retrievals on

ImageNet-100 using fI(x) in our NPID + CLD model. On
the contrary, NPID seems to be much more sensitive to textu-
ral appearance (e.g., Rows 1,4,6,7), first retrieve those with
similar textures or colors. CLD is able to retrieve semanti-
cally similar samples. Our conjecture is that by gathering
similar textures into groups, CLD can actually find more
informative feature that contrasts between groups. For ex-
ample, the 5th query image is a Chocolate sauce, which has
similar texture with Grouper fish. NPID incorrectly retrieves
many images from the Grouper Fish class, but CLD success-
fully captures the semantic information of the query image,
and retrieves instances with the same semantic information.
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Figure A.2: MoCo trained with different memory bank sizes
are evaluated with NMI, retrieval and kNN accuracy. While
a larger memory bank improves the retrieval performance,
the classification accuracy and NMI score do not always
increase: the NMI score drops sharply due to a large nega-
tive/positive ratio. There is a trade-off for best performance
at downstream classification.
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Figure A.3: Comparisons of top retrieves by NPID
(Columns 2-9) and NPID+CLD (Columns 10-17) according
to fI for the query images (Column 1) from the ImageNet
validation set. The results are sorted by NPID’s performance:
Retrievals with the same category as the query are outlined
in green and otherwise in red. NPID seems to be much more
sensitive to textural appearance (e.g., Rows 1,4,5,7), first
retrieve those with similar textures or colors. Integrated with
CLD, NPID+CLD is able to retrieve semantically similar
samples. (Zoom in for details)
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Phi-Hung Le, and Jana Košecká. Multiview rgb-d dataset for
object instance detection. In 3DV, 2016.

[8] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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