
Supplementary Materials:
Unsupervised Visual Attention and Invariance for Reinforcement Learning

Xudong Wang* Long Lian∗ Stella X. Yu
UC Berkeley / ICSI

{xdwang,longlian,stellayu}@berkeley.edu

1. Additional Environment Descriptions
1.1. DeepMind Control

We wrote a short description for each environment in
DeepMind Control suite [3] in Table 1 to further introduce
the environment.

Environment Descriptions
Walker A planar walker which encourages an upright torso and

minimal torso height in the “stand” task. In “walk” task
forward velocity is also encouraged.

Cartpole A pole tied to a cart at its base, with forces applied to the base.
“swingup” task requires the pole to swing up from pointing
down while “balance” task requires the pole to balance to be
upright.

Ball in cup A ball attached to a cup, with forces applied to the cup to
swing the ball up into the cup in the “catch” task.

Finger A finger is asked to rotate a rectangular body on a hinge.
The top of the body needs to overlap with the object in
“turn easy” task and the body needs to rotate continuously in
the “spin” task.

Cheetah An animal with two feet which is asked to run in the “run”
task.

Reacher A planar reacher with two links connected with a hinge in a
plane with a random target location. In the “easy” task, the
reacher is asked to reach the object location. The “hard” task
is unused in our evaluation since it was not adapted by [1].

Table 1: Descriptions for each environment in DeepMind
Control suite.

We also provide samples for the evaluation environments
designed by [1] in Fig. 1.

1.2. DrawerWorld

We propose the DrawerWorld, a benchmark with observa-
tions in pixels, based on MetaWorld [4] to enable the agent
to work in an environment close to real-life scenarios. There
are two tasks in DrawerWorld, which are DrawerOpen and
DrawerClose. These tasks ask a Sawyer robot to open and
close a drawer, respectively.

The multi-component reward function R is a combina-
tion of a reaching reward Rreach and a push reward Rpush as

*Equal contribution.

follows:

R = Rreach +Rpush

= −||h− p||2 + I||h−p||2<ε · c1 · exp{||p− g||22/c2}
(1)

where ε is a small distance threshold and is set as 0.08 by
default, p ∈ R3 be the object position, h ∈ R3 be the
position of the robot’s gripper, and g ∈ R3 be goal position.
c1 = 1000 and c2 = 0.01 for all tasks in DrawerWorld
benchmark.

The goal of distraction-robust RL is to learn a task-
conditioned policy π(a|s, z), where z indicates an encoding
of the task ID, and in this case, different task IDs have dif-
ferent drawer positions. This policy should maximize the av-
erage expected return from the task distribution p(T), given
by ET ∼p(T)[Eπ[

∑T
t=0 γ

tRt(st, at)]]. The success metric,
which is evaluate the agent in evaluation time, is described
by I||p−g||2<ε, where ε is set to 8cm. The difference between
training and evaluation time is the texture and color of the ta-
ble cloth. Image samples of textures that we use are provided
in the main text.

2. De-noise with Past Averages

Since our adapter model works on each frame separately
without any assumption on temporal continuity of consecu-
tive frames, our adapter works exactly the same on videos as
on fixed backgrounds and is not affected by drastic changes
in the background such as flashes of light. However, in some
environments where the assumption of temporal continu-
ity holds, i.e. with a relatively slow-moving background,
we may make use of this assumption to better de-noise the
observations before passing the them into the adapter.

We exploit the assumption here by keeping a mean of past
observations omean = 1

t

∑t
i=1 oi and subtract the mean from

observation ot and compute the observations after de-noise
with the formulation: This de-noise step happens before the
observation is sent into CNN (adaptor), formulated as:

ode-noised = filter(ot − αomean, ε) + αomean color (2)

Figure 1: Samples in evaluation environments in DeepMind Control. The samples in the first row are from [1].

where omean color is the mean of omean in spatial dimensions,
filter is a function that sets the part with value less than ε
to 0 to remove some noise, and α ∈ [0, 1] is the strength in
noise removal.

This is completely optional, and since it makes use of
an additional assumption, they are only used in the cartpole
and ball in cup in experiments with background videos and
experiments with distracting objects. In addition, we observe
that with Places dataset as augmentation, the model is robust
enough without this trick, so we disable it for all models in
the training of which Places dataset is used.

3. Memory Usage and Speed Comparisons

PAD VAI
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
pe

r e
pi

so
de

 (s
)

PAD VAI
0

100

200

300

400

500

600

700

Pe
ak

 G
PU

 m
em

or
y

us
ag

e
(M

B)

Figure 2: Comparisons on the mean time per episode and
GPU memory occupancy at evaluation time for DrawerClose
task in DrawerWorld between current state-of-the-art method
PAD [1] and the proposed method VAI. VAI is more than 2
times faster than PAD during testing time and requires∼40%
less GPU memory usage. Both methods are evaluated with
exactly the same backbone network. We take the mean of 10
runs for the latency comparison. Memory usage is obtained
with torch.cuda.max memory allocated.

From Fig. 2, it seems that VAI is about 3 times as fast
as PAD in terms of the evaluation time in each episode and
requires substantially less GPU memory than PAD. This is
largely due to the fact that PAD trains the encoder network
at evaluation time with back-propagation, which not only
requires the intermediate results to be saved in GPU memory
but also requires backward computation to update the model
parameters, which consumes both time and memory space.

Although VAI has an extra adapter module, the computation
and memory it takes are much less than the ones required
by backward computation and storing intermediate results.
According to the requirements of computational resources in
terms of speed and memory, our method is more suitable for
robots powered by battery and edge inference devices than
PAD from this point of view.

RL Observations Cumulative Reward
Joint Positions, Velocity, Torso Height
from the Environment

969±2

Joint Positions from the Environment 935±3

Keypoints Extracted with KeyNet 709±3
VAI on Training Environment 889±3

Table 2: Cumulative rewards on Walker, walk task with 1)
joint positions, velocity, and torso height from the environ-
ment as observations; 2) joint positions from the environment
as observations; 3) keypoints extracted by KeyNet from im-
ages; 4) The proposed method VAI. The first two use the
ground truth information, which is not accessible during
real-world deployment, and serve as upper bounds. For ex-
periment 2, 3, and 4, we use stack of 3 frames as input for
the RL agent to infer the velocity since velocity information
is missing. Since walker is a planar environment (the walker
will not lean towards to away from the screen), the extracted
keypoints should roughly correspond to positions from the
significant parts of the walker body. The gap between ex-
periments indicate that a limited number of keypoints from
KeyNet on its own is not a sufficiently informative or ac-
curate source for observations for an RL agent, which is
in accord with our visualization in the main text about the
keypoints’ temporal inconsistency.

4. Further Experiments with Raw Keypoints

To investigate the question of whether raw keypoints ex-
tracted from image observations by KeyNet are able to con-
tribute to effective learning of useful behaviors, we set up
experiments based on the Walker, walk task in DeepMind
Control and list the outcomes in Table 2.

Figure 3: Samples from DrawerWorld, DrawerClose task with their corresponding observation processed by the adapter
module. The Grid task is the training task for the adapter. All the observations use the same adapter for a fair comparison.

We first train an agent with the state-based observation
provided by the environment, a 24-dimensional tensor, which
includes positions of the joint, velocity, and walker’s torso
height. We do not stack frames for this experiment. This
experiment indicates an upper bound that our agent is able to
achieve in this environment. However, to make a fair compar-
ison with other experiments, where velocity and torso height
information is not directly provided, we also remove these
parts from our observation, leaving only the positions of the
joint as observation in the second experiment. Thus, in the
second experiment, the agent directly reads a 14-dimensional
tensor per frame from the environment based on the position
of each joint. The third experiment is conducted with the RL
agent reading a tensor that contains the (x, y) coordinates of
24 keypoints. The keypoints are from a KeyNet which reads
an image input. The KeyNet is pre-trained with transporter.
In the last experiment, we run VAI, with the adapter module
trained from the same KeyNet that is used in the experiment
above, on the training environment, although it is able to
adapt to other environments as well and thus is more general.
To infer velocity information, we stack the observations for
three frames for experiments 2, 3, and 4. We run both ex-
periments for 500k steps. We compare their efficiency by
evaluating the agent in training environment 10 times with
10 seeds.

According to the performance of these RL agents in the
training environment, keypoints on its own do not capture
all the information needed by the RL agent accurately. This
will be even worse if the agent is evaluated in a different en-
vironment is has never seen before, since KeyNet itself does
not come with the ability to adapt, although the keypoints
it generates are not supposed to carry domain-specific or
distraction information. Using keypoints information along
with image features as well as history observations may help,
as illustrated in [2] and described in the main text, but it
will add greatly to the complexity of the RL framework.

What’s more, agents may need information other than what
keypoints provide. For example, keypoints do not carry
the shape, size, and color information, which may be of
paramount importance in certain tasks. Furthermore, since
KeyNet allocates an output dimension for each keypoint, the
number of parameters as well as computation time scales lin-
early with the number of keypoints, which prohibits adding a
large number of keypoints to compensate the effect of tempo-
ral inconsistency or to capture complicated observations. In
contrast, since KeyNet is not used in getting adapted obser-
vations in our method, the speed and number of parameters
of our RL agent, including the adapter, at evaluation time
are not affected by the number of keypoints used to generate
ground-truth, which allows our method to scale to compli-
cated environments with many moving parts without losing
efficiency.

5. Visualizations of the Observation Adapter

How to make sure that RL will adapt to a certain setting
that is different from training setting is still an open problem.
Our method opts to work on observation-space. In contrast,
PAD works on an intermediate encoder feature space. Our
method is much easier to visualize and debug since humans
are able to directly understand the quality of adapted obser-
vations while it is really difficult to understand what happens
in the feature space.

To give examples on how to assess whether an adapter
works on a certain environment easily and to illustrate our
performance in a visual way in evaluation environments, we
gathered 6 pairs of raw samples and samples processed by
the adapter in DrawerClose task from the same adapter in
Fig. 3. As can be seen from the examples, the adapter model
differentiates most of the evaluation environments well, with
the exception of the marble environment, which the adapter
confuses parts of the foreground and background such as the

handle and the patches around the actuator, probably due to
the fact that the reflected light on the actuator has a similar
white color to the color of background. This indicates why
our model performances worse in marble environment, as
illustrated in the experiment section in the main text, and,
in real-life applications, means that the adapter needs to be
re-trained or fine-tuned with observations from similar en-
vironments, or if this is not applicable, with augmentation
specially-designed to handle this case. We leave the ques-
tion of handling adapter fine-tuning and re-training to later
research.

This visualization has a large impact on the real-world
applications of our method: with only a few observations
from an intended deployment environment, one could easily
visualize and assess whether our method will adapt to such
environment. This does not require any ability to run the
policy in the dynamics, nor does it require reward functions
or consecutive observations which may be difficult to obtain
from deployment environments in real-world applications.
We strongly believe that this simple assessment provides a
direction for future research in explainable, adaptable, and
generalizable reinforcement learning and will present great
benefit to potential applications of reinforcement learning.

References
[1] Nicklas Hansen, Yu Sun, Pieter Abbeel, Alexei A Efros, Lerrel

Pinto, and Xiaolong Wang. Self-supervised policy adaptation
during deployment. arXiv preprint arXiv:2007.04309, 2020.

[2] Tejas D Kulkarni, Ankush Gupta, Catalin Ionescu, Sebas-
tian Borgeaud, Malcolm Reynolds, Andrew Zisserman, and
Volodymyr Mnih. Unsupervised learning of object keypoints
for perception and control. In Advances in neural information
processing systems, pages 10724–10734, 2019.

[3] Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam
Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom Erez, Timothy
Lillicrap, and Nicolas Heess. dm control: Software and tasks
for continuous control, 2020.

[4] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol
Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforce-
ment learning. In Conference on Robot Learning (CoRL),
2019.

