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Abstract

This supplementary material accompanies the main pub-

lication of – NeuralFusion: Online Depth Fusion in Latent

Space – providing further information for better reproducibil-

ity as well as additional evaluations and qualitative results.

We also provide a video explaining the main method as well

as showcasing the most important results.

A. Evaluation Metrics

In order to compare our method to state-of-the-art

learning-based methods and standard TSDF fusion, we com-

pute the following six metrics on reconstructions:

Mean Squared Error (MSE) and Mean Absolute Dis-

tance (MAD). The mean squared error measures the re-

construction error on the TSDF field by penalizing large

surface deviations and outliers. The mean absolute distance

is also computed on the TSDF grid. However, it mainly

quantifies the performance on reconstructing fine geometric

details.

Accuracy (Acc.), F1 Score, Intersection-over-Union

(IoU): The accuracy is computed over the occupancy ob-

tained from the sign of the TSDF grid. We also report the F1

score, which is the harmonic mean of precision and recall.

By measuring both, completeness and accuracy, it is a more

holistic metric for quantifying the performance of a recon-

struction method. Moreover, we measure the IoU on the

occupancy grid. The IoU especially quantifies artifacts typi-

cally encountered in reconstructions from noisy depth maps,

such as surface and corner thickening and the vanishing of

fine geometric details.

Mesh Completeness (M.C.) and Accuracy (M.A.) We

compute the completeness using the evaluation pipeline

from [2]. The completeness describes the distance from

points sampled on the ground-truth mesh to the closest point

on the reconstructed mesh. Vice-versa, the accuracy com-

putes the distance from points sampled on the reconstructed

mesh to the closest point on the ground-truth mesh.

B. Reproducibility

For reproducibility, our source code will be made publicly

available upon publication. We further present more details

of our fusion pipeline in the following.

B.1. Details on Pipeline Architecture

Our method consists of four neural network components

that are used for (i) sub-volume extraction of the global

canonical feature volume, (ii) fusion of previously fused

feature with a new depth map , (iii) integration of the fused

updates back into the global feature volume, and (iv) trans-

lation from the latent feature space to TSDF and occupancy.

(i) Extraction Layer. In the extraction layer, we extract

the current state of the global feature volume into a view-

dependent canonical feature volume defined by the camera

parameters of the current measurement. In a first step, we

un-project all depth pixels into the global feature grid using

the camera parameters:

pXY Z =
[

R t
]−1 [

K−1p 1
]

(1)

where pXY Z are the coordinates of the un-projected point

in world coordinates and p = (px, py, d)
T are the pixel co-

ordinates with its corresponding depth measurements. In a

second step, we sample points around pXY Z in a window

centered at pXY Z and aligned with the direction of the view-

ing ray. This procedure is inspired by the extraction step

used in [3]. Finally, we convert the coordinates of each sam-

pled point to grid coordinates and extract the current feature

state using nearest-neighbor interpolation.

(ii) Feature Fusion Network. The feature fusion network

consists of three components: Feature Encoder, Feature

Decoder, and Feature Normalization, which are detailed

in the following.

1. Feature Encoder: The feature encoder is built from

four network blocks each consisting of the following

modules: 1) a 2D convolution having kernel size of 3

and zero padding reducing the number of input chan-

nels, 2) a layer normalization, 3) tanh activation, 4)



again a 2D convolution having kernel size of 3 and zero

padding but without reducing the channels, 5) layer nor-

malization, and 6) tanh activation. The ouput of each

block is concatenated with its input and passed to the

next block.

2. Feature Decoder: The feature decoder also consists of

four neural blocks, of which each has the same design

as the neural blocks in the feature encoder. However,

instead of having a kernel-size of three, the convolu-

tional layers in the feature decoder have a kernel-size

of one. The motivation behind this choice is that the

encoder has already encoded enough neighboring infor-

mation and, therefore, the decoder predicts the feature

updates based on the encoded information for each ray

separately.

3. Feature Normalization: After predicting the feature

updates for each position in the local, view-dependent

feature volume, we normalize each feature vector. This

normalization prevents the feature values from becom-

ing too large and, therefore, it improves the pipeline’s

capability to update the scene.

(iii) Integration Layer. In the integration layer, we inte-

grate the predicted feature updates from the fusion network

back into the global feature volume. Therefore, we aggre-

gate all updates that are mapped to the same global feature

grid location using the correspondence given by the camera

parameters. Then, we use an average pooling to combine

multiple correspondences to the same grid location. Finally,

we update the feature volume by using a running average

update similar to [1].

(iv) Feature Translation Network. The feature transla-

tion network renders the output modalities (TSDF and occu-

pancy) from the latent feature representation for a specific

query point pi. It consists of three components: a neighbor-

hood interpolator, a translation MLP, and two network heads

predicting the output modalities.

1. Neighborhood Interpolator: The neighborhood in-

terpolator encodes information from the neighboring

feature vector into a single feature vector. Therefore,

all neighboring feature vectors are concatenated and

passed through a single linear layer followed by tanh

activation. The output has the same dimension as one

single feature vector.

2. Translation MLP: The output of the neighborhood in-

terpolator is concatenated with the query point feature

vector gt(pi) and passed through the translation MLP.

The translation MLP is built from four linear layers

interleaved with tanh activations. During training, the

output of each layer is further passed through a channel-

wise dropout layer with dropout probability p = 0.2.

The first layer has 32 output channels, the second layer

has 16 output channels, and the third and fourth layer

have each 8 output channels. The output of each layer

is concatenated with the query point feature vector. The

output of the final layer is then passed to the two net-

work output heads.

3. Network Output Heads: The translation network has

two network output heads. Each head takes the output

of the MLP as an input and predicts a translation modal-

ity. The TSDF head predicts the TSDF using a single

linear layer outputting one channel that is followed by

a tanh activation. The output of the activation is further

scaled by the truncation band of the ground-truth TSDF

(0.04) to map it into the correct value range. The oc-

cupancy head is also passed through a linear layer but

activated using a sigmoid activation to map into a unit

interval.

B.2. Details on Hyperparameters

Table 1 summarizes the choice of all hyperparameters

that we used for all experiments in our work.

Optimizer

Name ADAM

β1 0.9
β2 0.999
ǫ 1.e− 08

Learning Rate Scheduling

Initial Learning Rate 0.01
Decay 0.998

Loss Weights

λ1 1.0
λ2 10.0
λo 0.01
λg 0.05

Table 1: Network hyperparameters

C. Qualtitative Results

In this section, we present more qualitative results to

demonstrate the performance of our method.

C.1. Synthetic Data

In Figure 2, we show additional qualitative results for the

outlier robustness experiment that we presented in the main

paper. Our method is consistently better in filtering outliers

than existing methods that have no outlier filtering or filter

outliers heuristically.
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Figure 1: Loss Ablation. All losses combined yield best

results.

C.2. Real­World Data

In Figure 3 we show more results on the real-world

Scene3D [5] dataset. With this experiment, we demonstrate

that our method generalizes well to real-world data and is

able to fuse and reconstruct measurements of large-scale

real-world scenes.

D. Further Evaluation

D.1. Generalization from a Single Object

In order to demonstrate the compactness and generaliza-

tion performance of our network, we train it only on a single

chair object from the ModelNet [4] dataset. We augment the

input depth maps with artificial noise of scale 0.01. We re-

port the results in Table 2 and show that our method trained

on a single object achieves almost the same performance

as our method trained on the full training set. Moreover, it

outperforms the currently best performing method - Routed-

Fusion [3] - that is trained on the full training set. This result

Method MSE↓ MAD↓ Acc.↑ IoU↑

[e-05] [e-02] [%] [0,1]

RoutedFusion [3] (full training set) 6.79 0.56 94.44 0.821

Ours (full training set) 4.84 0.42 96.30 0.874

Ours (single object) 3.94 0.44 94.51 0.848

Table 2: Our method trained on the standard training split

and on a single chair object only. The model trained on a

single object is almost on par with our model trained on

the full training set and outperforms the next best existing

method trained on the full training set.

indicates the applicability of our method to many real-world

scenarios, where the sensor setup might change. In fact, only

very little training data is required to retrain our method and

achieve state-of-the-art reconstruction results.

D.2. Loss Ablation

We have also run an ablation study to evaluate the impor-

tance of the different terms in our loss function. In Figure 1,

we show that the combination of all three loss terms yields

best results. The binary cross entropy is particularly useful

to improve convergence in the beginning of the training as

the network learns to predict a coarse shape that is further

refined by the losses on the SDF as training progresses.
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Figure 2: More qualitative results for different outlier fractions on ModelNet [4] examples. Our method consistently

removes more outliers than existing depth map fusion methods. Even for large outlier fractions, our method successfully filters

almost all of them.
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Figure 3: Additional results on Scene3D [5]. Our method reconstructs scenes with significantly higher completeness. This is

due to the learned translation that can effectively discriminate between outliers and geometry. Furthermore, our method can

filter large outlier blobs.
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