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1. More Details of Baselines

In our main manuscript, we have briefly described sev-
eral representative alignment-based methods, which we use
as our baselines for validating the effectiveness of our
MetaAlign. Here, we present more details of some base-
lines.
DANNPE. As shown in Fig. 1, DANNPE differs from
DANN in two key aspects: 1) Similar to [20, 5],
the predicted object classification probability/likelihood
C(G(·)) ∈ RK is treated as the input of domain discrim-
inator D, instead of the output feature of G(·) in DANN.
2) Following [20], we prioritize the discriminator on those
easy-to-transfer samples by re-weighting the samples based
on the entropy of object class prediction, with the weight
defined as ω(ent(·)) = e−ent(·), where ent(·) denotes the
entropy of the object class prediction. As shown in Table 1
in our main manuscript, DANNPE significantly outperforms
DANN.
MMD. We directly add the MMD constraint [2] on the out-
put of G(·) to encourage the feature alignment between
source domain and target domain data (see Fig. 2 (b) in our
main manuscript). The complete MMD loss (i.e., Eq. (4) in
the main manuscript) is formulated as:
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where fi = G(xi), and K(f , f ′) denotes a kernel function.
Following [19], we use the well-known characteristic kernel
RBF, i.e., K(f , f ′) = exp (− 1

2σ ||f − f ′||2), where σ is the
bandwidth parameter [19].

For MMD-based UDA, similar to Eq. (8) in the main

Figure 2: Two representative domain alignment 
based UDA frameworks. (a) DANN. (b) MMD.
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Figure 1: The pipeline of DANNPE.

manuscript, the optimization objective of MetaAlign is:

min
θ,φc,β

Ldom(θ)

+ Lcls
(
{θm − αβm∇θmLdom(θ, φd)}Mm=1 , φc

)
+ Lβ(β).

(2)

2. Experiments
We describe more details on the implementation,

datasets, settings, competitors, and present more experi-
mental results.

2.1. UDA for Classification

Implementation Details. We adopt ResNet-50 [10] pre-
trained on ImageNet [15] as the feature extractor for
all baselines. Following [5, 20], the domain classi-
fier/discriminator is composed of three fully connected lay-
ers with inserted dropout and ReLU layers for stable train-
ing, followed by a sigmoid function to output the domain
classification result. We divide the convolutional layers
of the feature extractor G into 4 groups (i.e., M = 4 in
Eq. (8)): the conv1 and conv2 x as the first group, conv3 x,
conv4 x, conv5 x as the second to fourth groups respec-
tively for simplicity.
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Figure 2: Visualization fo the Grad-CAMs [24] w.r.t. the object classification task. The first row of left/right panels show the
samples from source (Rw)/target (Cl) domains on Office-Home, while the second and third rows show the Grad-CAMs. The
object classification task always focuses on foreground objects, which is also claimed in [24, 26]

Figure 3: Object detection results on the target dataset Watercolor2k from (a) SW-DA (Baseline) (first two rows), and (b)
SW-DA+MetaAlign (last two rows).

Grad-CAMs of Classification Task. We illustrate the
Grad-CAMs [24] w.r.t. object classification task in Fig.
2. As can be seen, the object classification task always fo-
cuses on the foreground objects, which is also validated in
[24, 26].

2.2. UDA for Object Detection

Datasets and Experimental Setting. To simulate dissimi-
lar domains, Pascal VOC [7, 8] and Watercolor2k [13] are
treated as source and target domain respectively. 1) Pascal

VOC [7, 8] is a well-known benchmark for object detection
in real world scenario. In this dataset, 20 object classes with
their corresponding bounding boxes are annotated. Follow-
ing [23], we employ the split setting which uses Pascal VOC
2007 and 2012 as training and validation. 2) Watercolor2k
[13] is a collection of 2K watercolor images. It contains
6 categories in common with Pascal VOC. 1K images are
used for training and the other 1K for testing.

As in previous works [4, 23], we set the shorter side of
the image to 600 pixels following the implementation of



Faster RCNN[22] with ROI-alignment [9]. The meta learn-
ing rate α is set to 0.01, which is 10 times the learning rate
η.
Competitors. We compare with the following methods: 1)
Source Only trains model on source domain and directly
tests on target domain. 2) BDC-Faster adopts the typical
design of DANN, which takes the global features as input
of the domain discriminator D for adversarial learning. 3)
WST+BSR [14] constructs self-training on easy samples to
reduce the negative effects of inaccurate pseudo-labels. 4)
MAF [11] incorporates multiple domain discriminators on
hierarchical features. 5) DT-UDA [13] performs training on
style-translated target images with predicted pseudo-labels.
6) ATF [12] designs an asymmetric tri-way model to alle-
viate the collapse and out-of-control risk of the source do-
main. 7) SW-DA [23] aligns both global-level features and
local-level features between the source and target domains
by adversarial learning, which we take as our baseline for
evaluating MetaAlign.
Visualization Results. We have shown the performance
comparison in Table 5 in our main manuscript. Here, we
show the visualization of object detection results on the tar-
get dataset Watercolor2k [13] in Fig. 3. We can see that
for the baseline scheme SW-DA, there are many false de-
tections and missing detections. Thanks to the coordina-
tion between the domain alignment and the object detec-
tion optimization from our MetaAlign, the scheme SW-
DA+MetaAlign achieves more accurate detections, where
the false detections and missing detections are largely re-
duced.

2.3. Domain Generalization

Dataset and Settings. PACS [16] is a widely used bench-
mark for domain generalization. It contains 7 object cate-
gories from 4 domains (Photo, Art Painting, Cartoon and
Sketch). We evaluate on this dataset under a commonly-
used experimental protocol of leave-one-out [16, 3, 18],
where three domains are used for training and the remaining
one is considered as the target domain. The domain discrim-
inatorD of DANNPE here is kept the same as that for UDA
classification, except that the final layer is a FC layer with
3 neurons instead of 1 for distinguishing the three source
domains.
Competitors. 1) AGG simply trains a model directly on
the aggregation of all source domains. 2) MMD-AAE[19]
equips an autoencoder with a MMD loss to train a domain-
invariant encoder. 3) CrossGrad[25] is a typical data aug-
mentation based DG method which perturbs in the input
manifold to augment data. 4) MetaReg[1], 5) MLDG[17]
and 6) MASF[6] utilize meta-learning, which separate the
samples into meta-train splits and meta-test splits, to mimic
domain shift during training on source domains. 7) JiGen
imposes an auxiliary task of solving the Jigsaw puzzle on

top of AGG. 8) Epi-FCR[18] introduces a new episodic
training strategy. 9) MMLD[21] predicts the pseudo domain
labels and uses them for the adversarial domain learning.
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