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In this supplementary material, we first provide the de-
tailed network architecture of PV-RAFT. Then in Section B,
we show additional experimental results to demonstrate the
necessity of point-voxel correlation fields.

A. Network Architecture
The architecture of our network can be divided into four

parts: (1) Feature Extractor, (2) Correlation Module (3) It-
erative Update Module (4) Refinement Module. In this sec-
tion, we will introduce the implementation details of each
structure.

A.1. Feature Extractor

Backbone Feature Extractor We first construct a graph G
of input point cloud P , that contains neighborhood infor-
mation of each point. Then we follow FLOT which is based
on PointNet++ to design the feature extractor.

The feature extractor consists of three SetConvs to lift
feature dimension: 3 → 32 → 64 → 128. In each
SetConv, we first locate neighbor region N of P and use
F = concat(FN − FP , FN ) as input features, where
concat stands for concatenation operation. Then features F
are fed into the pipeline: FC → pool→ FC → FC. Each
FC block consists of a 2D convolutional layer, a group nor-
malization layer and a leaky ReLU layer with the negative
slope as 0.1. If we denote the input and output dimension
of the SetConv as di, do, then the dimension change for FC
blocks is: di → dmid = (di+do)/2→ do → do. However,
if di = 3, then dmid is set to do/2. The pool block performs
the max-pooling operation.
Context Feature Extractor The context feature extractor
aims to encode context features of P1. It has exactly the
same structure as the backbone feature extractor, but with-
out weight sharing.
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A.2. Correlation Module

Point Branch The extracted KNN features Fp(P ) are first
concatenated with position features C(NP ) − C(P ), then
it is fed into a block that consists of one point-wise convo-
lutional layer, one group normalization layer, one p-ReLU
layer, one max-pooling layer and one point-wise convolu-
tional layer. The feature dimension is updated from 4 to
64.
Voxel Branch The extracted voxel features Fv(P ) are fed
into a block that consists of one point-wise convolutional
layer, one group-norm layer, one p-ReLU layer and one
point-wise convolutional layer. The feature dimension is
updated as: a3 ∗ l → 128→ 64, where a = 3 is the resolu-
tion hyper-parameter and l = 3 is the pyramid level.

A.3. Iterative Update Module

The update block consists of three parts: Motion En-
coder, GRU Module and Flow Head.
Motion Encoder The inputs of motion encoder are flow f
and correlation features C. These two inputs are first fed
into a non-share convolutional layer and a ReLU layer sep-
arately to get f ′ and C′. Then they are concatenated and fed
into another convolutional layer and a ReLU layer to get f ′′.
Finally we concat f and f ′′ to get motion features fm.
GRU Module The inputs of GRU module are context fea-
tures and motion features. The update process has already
been introduced in our main paper.
Flow Head The input of the flow head is the final hidden
state ht of GRU module. ht is first fed into a 2D convolu-
tional layer to get h′t. On the other hand, ht is fed into a
SetConv layer, introduced in backbone feature extractor, to
get h′′t . Then we concatenate h′t and h′′t and pass through a
2D convolutional layer to adjust the feature dimension to 3.
The output is used to update flow prediction.



Table 1: The necessity of point-voxel correlation fields. We conducted experiments on FlyingThings3D dataset without
refinement. KNN pyramid means we concatenated correlation features with different K.

Modality Hyperparameters EPE(m)↓ Acc Strict↑ Acc Relax↑ Outliers↓

KNN
K = 32 0.0741 0.6111 0.8868 0.4549
K = 64 0.2307 0.1172 0.3882 0.8547
K = 128 0.6076 0.0046 0.0333 0.9979

KNN pyramid K = 16, 32, 64 0.1616 0.2357 0.6062 0.7318
K = 32, 64, 128 0.4841 0.0158 0.0885 0.9882

voxel pyramid

r = 0.0625, l = 3 0.1408 0.5126 0.8057 0.5340
r = 0.125, l = 3 0.0902 0.5345 0.8533 0.5085
r = 0.25, l = 3 0.0712 0.6146 0.8983 0.4492
r = 0.0625, l = 5 0.0672 0.6325 0.9131 0.4023

point-voxel K = 32, r = 0.25, l = 3 0.0534 0.7348 0.9418 0.3645

A.4. Refinement Module

The input of the refinement module is the predicted flow
f∗. The refinement module consists of three SetConv mod-
ules and one Fully Connected Layer. The SetConv module
has been introduced in feature extractor part and the dimen-
sion is changed as: 3 → 32 → 64 → 128. The output
feature f∗r of fully connected layer is of dimension 3. We
implement a residual mechanism to get the final prediction
that combines f∗ and f∗r .

B. Additional Experiments
As mentioned in Section 4.3, we tried intuitive solutions

to model all-pairs correlations. We conducted experiments
on FlyingThings3D dataset without refinement. Specif-
ically, for the point branch, we leveraged more nearest
neighbors to encode large receptive fields. When only us-
ing the voxel branch, we reduce the side length r of lattices
to capture fine-grained relations. Moreover, we adopted the
KNN search with different K simultaneously to construct
a KNN pyramid , which aims to aggregate the feature with
different receptive fields. However, as shown in Table 1,
all these tries failed to achieve promising results. We argue
that this may because of the irregularity of point clouds. On
the one hand, for the region with high point density, a large
number of neighbors still lead to a small receptive field. On
the other hand, although we reduce side length, the voxel
branch cannot extract point-wise correlation features. Inte-
grating these two types of correlations, the proposed point-
voxel correlation fields help PV-RAFT to capture both local
and long-range dependencies.


