Appendix
A. Implementation details

We train our agents using the AllenAct Embodied Al
framework [46] for ~75 Mn steps. We run our experiments
on g4dn.12xlarge Amazon EC2 instances which has
4 NVIDIA T4 GPUs and 48 CPU cores. See Table 2 for
an accounting of our training hyperparameters (e.g. learn-
ing rate, loss weights, etc.). During training we obtain an
FPS of ~125 when training models with expert supervision
and an FPS of ~300 when training purely with PPO. Thus,
training for ~75 Mn steps requires approximately 4.3 days
when using expert supervision and 1.8 without.

The reward structures for our agents differ in the walk-

through and unshuffle stages. Rather than provide explicit
details here, as these are better read directly from code, we
give some intuition about these reward structures.
Unshuffle stage rewards. For the unshuffle stage the re-
ward is quite simple. Suppose that before the agent takes an
action the scene is in state s' € S and, after the agent takes
a step, the scene is in state s> € S. The agent’s reward is
then equal to the change in energy of the scene (with respect
to the goal pose s*), i.e. D(s!,s*) — D(s2, s*). Thus if the
energy has decreased (D(s?,s*) < D(s!,s*)) so that the
scene is closer to the goal state than it was before, then the
agent gets a positive reward. Otherwise, the agent may re-
ceive a negative reward. At the end of an unshuffle episode
the agent receives a penalty equal to the negation of the re-
maining energy.
Walkthrough stage rewards. In the walkthrough stage we
would like the agent to see as many of the objects in the
scene as possible so that, during the unshuffle stage, the
agent can compare the object poses seen against their goal
positions. To this end, after every step in the walkthrough
stage, the agent receives reward if it observes objects that it
has never seen previously in the episode. At the end of the
episode we provide the agent a reward based on the propor-
tion of objects the agent has seen among all objects in the
scene. We found this reward helpful to encourage the agent
to be as exhaustive as possible.

B. Heuristic Expert

The sole purpose of our expert is to produce expert ac-
tions for our learning agents to imitate. As such it is allowed
to “cheat” by using extensive ground truth state information
including the scene layout and poses of all objects in current
and goal states. As it does not have to reason from visual
input, the heuristic expert’s performance cannot be fairly
compared against the other agents. At a high-level our ex-
pert operates by looping through (1) selecting the closest
object that is not in its goal pose, (2) navigating to this ob-
ject via shortest paths computed on the scene layout, (3)

Hyperparamter Value
PPO
Discount factor (vy) 0.99
GAE parameter () 0.95
Value loss coefficient 0.5
Entropy loss coefficient 0.01
Clip parameter (¢) [40] 0.1
Decay on € Linear(1,0.39, 75¢6)

PPQO-only — Training

Processes to sample steps 40 (5 per GPU)
LR Decay Linear(1,1/3, 25€e6)

IL and IL+PPO — Training

Processes to sample steps 40 (5 per GPU)

Common — Training

Rollout timesteps 64

Rollouts per minibatch 40

Epochs 3

Learning rate 3e-4
Optimizer Adam [28]
(81, B2) for Adam (0.9,0.999)
Gradient clip norm 0.5

Training steps 75 Million

Table 2: Training hyperparameters. Here Linear(a, b, ¢)
corresponds to linear interpolation between a and b within
c training steps.

picking up the object, (4) navigating to the closest position
from which the object can be placed in its goal pose, and
(5) placing the object. As AI2-THOR is physics based, it is
possible for the above steps to fail (e.g. an object falls in the
way of the agent as it navigates), because of this the agent
has backtracking capabilities to allow it to give up on plac-
ing an object temporarily in the hope that, in placing other
objects, it will remove the obstruction.

C. Lower-level actions

As discussed in Sec. 6.1, in our experiments we use a
“high-level” action space in line with prior work. We sus-
pect (and hope) that within the next few years the rearrange-
ment task will be solved using these high-level actions en-
abling us to move to low-level actions which are more easily
implementable on existing robotic hardware. In prepara-
tion for this eventuality, we have implemented a number of
lower-level actions. Rather than describe these actions indi-
vidually, we will describe them in contrast to their higher-
level counterparts.

Continuous navigation. In our experiments the agent
moves at increments of 0.25 meters, uses 90° rotations, and
changes its camera angle by 30° at a time. We have imple-
mented fully continuous motion so that the agent can rotate

and move arbitrary degrees and distances respectively.

Object manipulation. Our high-level actions include
a PLACEOBIJECT action that abstracts away the sub-
tleties of moving a held object to a goal location. In
our low-level actions we now allow the agent to move a
held object through space (within some distance of the
agent) possibly colliding with other objects. The agent
then must explicitly drop the object into to the goal location.

Opening and picking up objects. When an agent opens an
object using one of the 10 high-level open actions the agent
is not required to specify the target openness nor specify
where, in space, the object to open resides. Fig. 7 shows
how objects are targeted with our lower-level actions. For
our low-level open action the agent must specify the (z,y)
coordinates (in pixel-space) of the object, as well as the
amount that the object is opened. Similarly, our low level
PICKUP action requires specifying the object with (z, y) co-
ordinates rather than by the object’s type.

D. Semantic Mapping

As discussed in the main paper, we include two base-
lines that incorporate the “Active Neural SLAM” module of
Chaplot et al. (2020) [8] which we have adapted (by in-

Figure 7: Lower-level object targeting. Instead of target-
ing objects based on their annotated type, the lower-level
targeting action targets objects based on their location in
the agent’s current frame. For each (x,y) coordinate, with
0 < z,y < 1, the and y coordinates denote the relative
distance from the left and top of the frame, respectively.

creasing the number of output channels in the map) to per-
form semantic mapping.

We pretrain the ANM module so that, given a
224x224x3 image from AI2-THOR, it returns a
40x40x75 tensor M corresponding to an estimate of
the semantic map in a 2mx2m region directly in front of
the agent (3 channels are used to predict free space, the
other 72 are used to predict the probability that one of our
72 rearrangement objects occupies a given map location).

After pretraining this module we freeze its weights and
incorporate it into our baseline model, recall Sec. 5. In par-
ticular, we remove the nonparametric map from our base-
line and replace it with the ANM. During the walkthrough
stage the agent constructs the semantic map and saves it.
During the unshuffle stage, the agent indexes into the walk-
through map to retrieve the estimate of the egocentric se-
mantic map for the agent’s current position. It compares
this walkthrough map estimate against its current map es-
timate through the use of an attention mechanism: the two
estimates are concatenated, embedded via a CNN, and then
attention is computed spatially to downsample the embed-
dings to a single 512-dimensional vector. This embedding
is then concatenated to the input to the 1-layer LSTM (recall
Sec. 5) along with the usual visual and discrete embeddings.

E. Computing the energy between two poses

In our discussion of the “% Energy Remaining” metric
(recall Sec. 3.2) we deferred the definition of the energy
function D : S x S — [0, 1], we define this energy function
now. Let s* = (p!,0l,ct,bt),s? = (p?,0%,¢2,b%) € S be
two possible poses for an object. Then,

o Ifb! =1orb? =1welet D(s!,s?) = 1.

* Otherwise, if the object is openable but not pickupable,
we let D(s!,s?) = 0if |o! — 0?| < 0.2 and otherwise
D(s', s%) = 1, otherwise

» Otherwise, if the object is pickupable, we have two
cases. Suppose that IOU(s', s?) > 0. Then we let
D(st,s%) = 0.5 - max(0,0.5 — IOU(s?, s?)). Other-
wise, we let D(s!, s?) = 0.5+0.5-min(d/2, 1) where
d be the minimum distance between a point in ¢! and
a point in c2.

Note that D decreases monotonically as poses p', p? come
closer together.

F. Object types

The list of all objects have been provided in Tab. 3.

Object Type [A-L]

Openable

Pickupable

AlarmClock
AluminumFoil
Apple
ArmChair
BaseballBat
BasketBall
Bathtub
BathtubBasin
Bed

Blinds

Book

Boots

Bottle

Bowl

Box

Bread
ButterKnife
CD

Cabinet
Candle
CellPhone
Chair

Cloth
CoffeeMachine
CoffeeTable
CounterTop
CreditCard
Cup
Curtains
Desk
DeskLamp
Desktop
DiningTable
DishSponge
DogBed
Drawer
Dresser
Dumbbell
Egg

Faucet
Floor
FloorLamp
Footstool
Fork

Fridge
GarbageBag
GarbageCan
HandTowel
HandTowelHolder
HousePlant
Kettle
KeyChain
Knife

Ladle
Laptop
LaundryHamper
Lettuce
LightSwitch

XN NUZX XX NUX XX ™X™XUNRXRKARARRRXRXCUX™XXRXRXRXRARRXXXX™X™X™XXCURRXRCUXXXNNUXXXXXXXXX

JMONUZX N NN NN ZX™:XUZ™® ™D NUNUZ]™X™NUUZR™X™®URRXRRXRCURRRCUCRCTECRCICTNCNCIUXRXXX NN NSNS

Object Type [M-Z]

Openable

Pickupable

Microwave
Mirror

Mug
Newspaper
Ottoman
Painting

Pan
PaperTowelRoll
Pen

Pencil
PepperShaker
Pillow

Plate

Plunger

Poster

Pot

Potato
RemoteControl
RoomDecor
Safe
SaltShaker
ScrubBrush
Shelf
ShelvingUnit
ShowerCurtain
ShowerDoor
ShowerGlass
ShowerHead
SideTable
Sink
SinkBasin
SoapBar
SoapBottle
Sofa

Spatula

Spoon
SprayBottle
Statue

Stool
StoveBurner
StoveKnob
TVStand
TableTopDecor
TeddyBear
Television
TennisRacket
TissueBox
Toaster

Toilet
ToiletPaper
ToiletPaperHanger
Tomato

Towel
TowelHolder
VacuumCleaner
Vase

Watch
WateringCan
Window
WineBottle

]}]} X XX XX XXX NUDZX X X XX XXX R X XK XXX XX XXX XXX NN XXX X NUD®X XX R XR XK XXX XXX XXX XX XN

X

N N N N N T N N T T N N TN I R T N T N T T TN N NN IR TN

Table 3: Object types. All object types available in AI2-THOR (and thus present in our task) along with whether they are
openable or pickupable.

